2,748 research outputs found

    Mineral fabrication and golgi apparatus activity in the mouse calvarium

    Get PDF
    There is diverse opinion about the mechanism of bone mineralization with only intermittent reports of any direct organellar role played by the golgi apparatus (juxtanuclear body). Light and laser confocal microscopy was combined with electron microscopy and elemental EDX (energy dispersive X-ray microanalysis) in comparing “young” osteocytes in situ in fresh and “slam” frozen developing mouse calvarium, with similar cells (MC3T3-E1) maintained in vitro. The distribution of “nascent” electron dense mineral was examined histochemically (von Kossa, GBHA), including tetracycline (TC) staining as a fluorescent complex with bone salt, while golgi body activity was demonstrated by transfection with a specific green fluorescent construct (GFP/mannosidase II). In tissue culture golgi body activity and mineralization were both blocked by brefeldin A (an established golgi inhibitor) and restored by forskolin, enabling an association with mineral fabrication to be quantified as changing fluorescence intensity (AU) of GFP or TC markers. Results from osteocytes in situ supported previous descriptions of intracellular electron dense objects (microspheres and nanospheres) in a juxtanuclear pattern, containing Ca, P and transitory Si, in a spectrum recapitulated in the calcifying culture after 10 days, when GFP fluorophore surged from 71.7 ± 1.4SD to 133.7 ± 2.7SD AU by 14 days (p < 0.0001). At this stage TC fluorophore mean intensity was 23.8 ± 3.7SD AU (14 days) rising to 45.0 ± 5.1SD AU by 17 days, compared to its stationary 21.7 ± 3.6SD when treated 3 days previously with BFA golgi inhibitor (p < 0.0001), until forskolin reversal. It was concluded from the changing juxtanuclear morphology, Si mineralization mediation and the variably controlled activity versus stasis that the inorganic phase of bone is a complex golgi-directed fabrication with implications for bone matrix biology and evolution

    Variation in Heat Transfer During Transient Heating of a Hemisphere at a Mach Number of 2

    Get PDF
    Convective heat-transfer tests were made on a 5-inch-diameter hemisphere to determine the variation of Stanton number with the ratio of wall temperature to total temperature. The tests were made at a nominal Mach number of 2 for stagnation temperatures of 760 deg R, 1,030 deg R, and 1,380 deg R. The model was constructed so that radiation effects and also streamwise conduction effects within the model skin were minimized. The results of the tests verified that these effects were small. Tests which were made with different masses of air inside the model to check for conduction effects to the internal air cavity showed these effects to be negligible. For laminar flow on the hemisphere, the Stanton number remained essentially constant as the ratio of wall temperature to total temperature increased. However, for fully established turbulent flow, the Stanton number at some stations decreased on the order of 50 percent as the ratio of wall temperature to total temperature increased. A theory which agreed fairly well with the trend of this decrease is shown for comparison

    LHS6343C: A Transiting Field Brown Dwarf Discovered by the Kepler Mission

    Get PDF
    We report the discovery of a brown dwarf that transits one member of the M+M binary system LHS6343AB every 12.71 days. The transits were discovered using photometric data from the Kelper public data release. The LHS6343 stellar system was previously identified as a single high-proper-motion M dwarf. We use high-contrast imaging to resolve the system into two low-mass stars with masses 0.45 Msun and 0.36 Msun, respectively, and a projected separation of 55 arcsec. High-resolution spectroscopy shows that the more massive component undergoes Doppler variations consistent with Keplerian motion, with a period equal to the transit period and an amplitude consistent with a companion mass of M_C = 62.8 +/- 2.3 Mjup. Based on an analysis of the Kepler light curve we estimate the radius of the companion to be R_C = 0.832 +/- 0.021 Rjup, which is consistent with theoretical predictions of the radius of a > 1 Gyr brown dwarf.Comment: Our previous analysis neglected the dependence of the scaled semimajor axis, a/R, on the transit depth. By not correcting a/R for the third-light contamination, we overestimated the mass of Star A, which led to an overestimate the mass and radius of the LHS6343

    Optical coherence tomography in the assessment of acute changes in cutaneous vascular diameter induced by heat stress.

    Get PDF
    There are limited imaging technologies available that can accurately assess or provide surrogate markers of the in vivo cutaneous microvessel network in humans. In this study, we establish the use of optical coherence tomography (OCT) as a novel imaging technique to assess acute changes in cutaneous microvessel area density and diameter in humans. OCT speckle decorrelation images of the skin on the ventral side of the forearm up to a depth of 500 μm were obtained prior to and following 20-25 mins of lower limb heating in eight healthy males (30.3±7.6 yrs). Skin red blood cell flux was also collected using laser Doppler flowmetry probes immediately adjacent to the OCT skin sites, along with skin temperature. OCT speckle decorrelation images were obtained at both baseline and heating time points. Forearm skin flux increased significantly (0.20±0.15 to 1.75±0.38 CVC, P<0.01), along with forearm skin temperature (32.0±1.2 to 34.3±1.0°C, P<0.01). Quantitative differences in the automated calculation of vascular area densities (26±9 to 49±19%, P<0.01) and individual microvessel diameters (68±17 to 105±25 μm, P<0.01) were evident following the heating session. This is the first in vivo within-subject assessment of acute changes in the cutaneous microvasculature in response to heating in humans and highlights the use of OCT as an exciting new imaging approach for skin physiology and clinical research

    The Transit Ingress and the Tilted Orbit of the Extraordinarily Eccentric Exoplanet HD 80606b

    Get PDF
    We present the results of a transcontinental campaign to observe the 2009 June 5 transit of the exoplanet HD 80606b. We report the first detection of the transit ingress, revealing the transit duration to be 11.64 +/- 0.25 hr and allowing more robust determinations of the system parameters. Keck spectra obtained at midtransit exhibit an anomalous blueshift, giving definitive evidence that the stellar spin axis and planetary orbital axis are misaligned. The Keck data show that the projected spin-orbit angle is between 32-87 deg with 68.3% confidence and between 14-142 deg with 99.73% confidence. Thus the orbit of this planet is not only highly eccentric (e=0.93), but is also tilted away from the equatorial plane of its parent star. A large tilt had been predicted, based on the idea that the planet's eccentric orbit was caused by the Kozai mechanism. Independently of the theory, it is noteworthy that all 3 exoplanetary systems with known spin-orbit misalignments have massive planets on eccentric orbits, suggesting that those systems migrate differently than lower-mass planets on circular orbits.Comment: ApJ, in press [13 pg

    HAT-P-24b: An inflated hot-Jupiter on a 3.36d period transiting a hot, metal-poor star

    Get PDF
    We report the discovery of HAT-P-24b, a transiting extrasolar planet orbiting the moderately bright V=11.818 F8 dwarf star GSC 0774-01441, with a period P = 3.3552464 +/- 0.0000071 d, transit epoch Tc = 2455216.97669 +/- 0.00024 (BJD_UTC), and transit duration 3.653 +/- 0.025 hours. The host star has a mass of 1.191 +/- 0.042 Msun, radius of 1.317 +/- 0.068 Rsun, effective temperature 6373 +/- 80 K, and a low metallicity of [Fe/H] = -0.16 +/- 0.08. The planetary companion has a mass of 0.681 +/- 0.031 MJ, and radius of 1.243 +/- 0.072 RJ yielding a mean density of 0.439 +/- 0.069 g cm-3 . By repeating our global fits with different parameter sets, we have performed a critical investigation of the fitting techniques used for previous HAT planetary discoveries. We find that the system properties are robust against the choice of priors. The effects of fixed versus fitted limb darkening are also examined. HAT-P-24b probably maintains a small eccentricity of e = 0.052 +0.022 -0.017, which is accepted over the circular orbit model with false alarm probability 5.8%. In the absence of eccentricity pumping, this result suggests HAT-P-24b experiences less tidal dissipation than Jupiter. Due to relatively rapid stellar rotation, we estimate that HAT-P-24b should exhibit one of the largest known Rossiter-McLaughlin effect amplitudes for an exoplanet (deltaVRM ~ 95 m/s) and thus a precise measurement of the sky-projected spin-orbit alignment should be possible.Comment: 13 pages with 4 figures and 8 tables in emulateapj format. Minor changes. Accepted in The Astrophysical Journa

    HAT-P-27b: A hot Jupiter transiting a G star on a 3 day orbit

    Get PDF
    We report the discovery of HAT-P-27b, an exoplanet transiting the moderately bright G8 dwarf star GSC 0333-00351 (V=12.214). The orbital period is 3.039586 +/- 0.000012 d, the reference epoch of transit is 2455186.01879 +/- 0.00054 (BJD), and the transit duration is 0.0705 +/- 0.0019 d. The host star with its effective temperature 5300 +/- 90 K is somewhat cooler than the Sun, and is more metal-rich with a metallicity of +0.29 +/- 0.10. Its mass is 0.94 +/- 0.04 Msun and radius is 0.90 +/- 0.04 Rsun. For the planetary companion we determine a mass of 0.660 +/- 0.033 MJ and radius of 1.038 +0.077 -0.058 RJ. For the 30 known transiting exoplanets between 0.3 MJ and 0.8 MJ, a negative correlation between host star metallicity and planetary radius, and an additional dependence of planetary radius on equilibrium temperature are confirmed at a high level of statistical significance.Comment: Submitted to ApJ on 2011-01-18. 12 pages, 7 figures, 7 table

    Stellar Spin-Orbit Misalignment in a Multiplanet System

    Full text link
    Stars hosting hot Jupiters are often observed to have high obliquities, whereas stars with multiple co-planar planets have been seen to have low obliquities. This has been interpreted as evidence that hot-Jupiter formation is linked to dynamical disruption, as opposed to planet migration through a protoplanetary disk. We used asteroseismology to measure a large obliquity for Kepler-56, a red giant star hosting two transiting co-planar planets. These observations show that spin-orbit misalignments are not confined to hot-Jupiter systems. Misalignments in a broader class of systems had been predicted as a consequence of torques from wide-orbiting companions, and indeed radial-velocity measurements revealed a third companion in a wide orbit in the Kepler-56 system.Comment: Accepted for publication in Science, published online on October 17 2013; PDF includes main article and supplementary materials (65 pages, 27 figures, 7 tables); v2: small correction to author lis
    corecore