73 research outputs found

    Past, Present and Future Eutrophication Status of the Baltic Sea

    Get PDF
    We modelled and assessed the past, present and predicted future eutrophication status of the Baltic Sea. The assessment covers a 350-year period from 1850 to 2200 and is based on: (1) modelled concentrations of dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorous (DIP), chlorophyll-a, Secchi depth, and oxygen under four different of nutrient input scenarios and (2) the application of a multi-metric indicator-based tool for assessment of eutrophication status: HEAT 3.0. This tool was previously applied using historical observations to determine eutrophication status from 1901 to 2012. Here we apply HEAT 3.0 using results of a biogeochemical model to reveal significant changes in eutrophication status from 1850 to 2200. Under two scenarios where Baltic Sea Action Plan (BSAP) nutrient reduction targets are met, we expect future good status will be achieved in most Baltic Sea basins. Under two scenarios where nutrient loads remain at 1997–2003 levels or increase, good status will not be achieved. The change from a healthy state without eutrophication problems in the open waters took place in the late 1950s and early 1960s. Following introduction of the first nutrient abatement measures, recovery began in some basins in the late 1990s, whilst in others it commenced in the beginning of the 21st century. Based on model results, we expect that the first basin to achieve a status without eutrophication will be Arkona, between 2030 and 2040. By 2060–2070, a status without eutrophication is anticipated for the Kattegat, Bornholm Basin and Gulf of Finland, followed by the Danish straits around 2090. For the Baltic Proper and Bothnian Sea, a good status with regard to eutrophication is not expected before 2200. Further, we conclude that two basins are not likely to meet the targets agreed upon and to attain a status unaffected by eutrophication, i.e., the Gulf of Riga and Bothnian Bay. These results, especially the prediction that some basins will not achieve a good status, can be used in support of continuous development and implementation of the regional ecosystem-based nutrient management strategy, the HELCOM Baltic Sea Action Plan

    Long photoperiods sustain high pH in Arctic kelp forests

    Get PDF
    Concern on the impacts of ocean acidification on calcifiers, such as bivalves, sea urchins, and foraminifers, has led to efforts to understand the controls on pH in their habitats, which include kelp forests and seagrass meadows. The metabolism of these habitats can lead to diel fluctuation in pH with increases during the day and declines at night, suggesting no net effect on pH at time scales longer than daily. We examined the capacity of subarctic and Arctic kelps to up-regulate pH in situ and experimentally tested the role of photoperiod in determining the capacity of Arctic macrophytes to up-regulate pH. Field observations at photoperiods of 15 and 24 hours in Greenland combined with experimental manipulations of photoperiod show that photoperiods longer than 21 hours, characteristic of Arctic summers, are conducive to sustained up-regulation of pH by kelp photosynthesis. We report a gradual increase in pH of 0.15 units and a parallel decline in pCO2 of 100 parts per million over a 10-day period in an Arctic kelp forest over midsummer, with ample scope for continued pH increase during the months of continuous daylight. Experimental increase in CO2 concentration further stimulated the capacity of macrophytes to deplete CO2 and increase pH. We conclude that long photoperiods in Arctic summers support sustained up-regulation of pH in kelp forests, with potential benefits for calcifiers, and propose that this mechanism may increase with the projected expansion of Arctic vegetation in response to warming and loss of sea ice.The study was funded by the Danish Environmental Protection Agency within the Danish Cooperation for Environment in the Arctic. It is also a contribution to the Greenland Ecosystem Monitoring program (www.G-E-M.dk) and the Arctic Science Partnership (www.asp-net.org). M.S.-M. was supported by a Fundación “La Caixa” fellowship (Spain). We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI).Peer reviewe

    An objective framework to test the quality of candidate indicators of good environmental status

    Get PDF
    Large efforts are on-going within the EU to prepare the Marine Strategy Framework Directive's (MSFD) assessment of the environmental status of the European seas. This assessment will only be as good as the indicators chosen to monitor the 11 descriptors of good environmental status (GEnS). An objective and transparent framework to determine whether chosen indicators actually support the aims of this policy is, however, not yet in place. Such frameworks are needed to ensure that the limited resources available to this assessment optimize the likelihood of achieving GEnS within collaborating states. Here, we developed a hypothesis-based protocol to evaluate whether candidate indicators meet quality criteria explicit to the MSFD, which the assessment community aspires to. Eight quality criteria are distilled from existing initiatives, and a testing and scoring protocol for each of them is presented. We exemplify its application in three worked examples, covering indicators for three GEnS descriptors (1, 5, and 6), various habitat components (seaweeds, seagrasses, benthic macrofauna, and plankton), and assessment regions (Danish, Lithuanian, and UK waters). We argue that this framework provides a necessary, transparent and standardized structure to support the comparison of candidate indicators, and the decision-making process leading to indicator selection. Its application could help identify potential limitations in currently available candidate metrics and, in such cases, help focus the development of more adequate indicators. Use of such standardized approaches will facilitate the sharing of knowledge gained across the MSFD parties despite context-specificity across assessment regions, and support the evidence-based management of European seas

    Past, Present and Future Eutrophication Status of the Baltic Sea

    Get PDF
    We modelled and assessed the past, present and predicted future eutrophication status of the Baltic Sea. The assessment covers a 350-year period from 1850 to 2200 and is based on: (1) modelled concentrations of dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorous (DIP), chlorophyll-a, Secchi depth, and oxygen under four different of nutrient input scenarios and (2) the application of a multi-metric indicator-based tool for assessment of eutrophication status: HEAT 3.0. This tool was previously applied using historical observations to determine eutrophication status from 1901 to 2012. Here we apply HEAT 3.0 using results of a biogeochemical model to reveal significant changes in eutrophication status from 1850 to 2200. Under two scenarios where Baltic Sea Action Plan (BSAP) nutrient reduction targets are met, we expect future good status will be achieved in most Baltic Sea basins. Under two scenarios where nutrient loads remain at 1997-2003 levels or increase, good status will not be achieved. The change from a healthy state without eutrophication problems in the open waters took place in the late 1950s and early 1960s. Following introduction of the first nutrient abatement measures, recovery began in some basins in the late 1990s, whilst in others it commenced in the beginning of the 21st century. Based on model results, we expect that the first basin to achieve a status without eutrophication will be Arkona, between 2030 and 2040. By 2060-2070, a status without eutrophication is anticipated for the Kattegat, Bornholm Basin and Gulf of Finland, followed by the Danish straits around 2090. For the Baltic Proper and Bothnian Sea, a good status with regard to eutrophication will not be expected before 2200. Further, we conclude that two basins are not likely to meet the targets agreed upon and to attain a status unaffected by eutrophication, i.e. the Gulf of Riga and Bothnian Bay. These results, especially the prediction that some basins will not achieve a good status, can be used in support of continuous development and implementation of the regional ecosystem-based nutrient management strategy, the HELCOM Baltic Sea Action Plan.Peer reviewe

    Safe and just operating spaces for regional social-ecological systems

    Get PDF
    Humanity faces a major global challenge in achieving wellbeing for all, while simultaneously ensuring that the biophysical processes and ecosystem services that underpin wellbeing are exploited within scientifically informed boundaries of sustainability. We propose a framework for defining the safe and just operating space for humanity that integrates social wellbeing into the original planetary boundaries concept (Rockström et al., 2009a,b) for application at regional scales. We argue that such a framework can: (1) increase the policy impact of the boundaries concept as most governance takes place at the regional rather than planetary scale; (2) contribute to the understanding and dissemination of complexity thinking throughout governance and policy-making; (3) act as a powerful metaphor and communication tool for regional equity and sustainability. We demonstrate the approach in two rural Chinese localities where we define the safe and just operating space that lies between an environmental ceiling and a social foundation from analysis of time series drawn from monitored and palaeoecological data, and from social survey statistics respectively. Agricultural intensification has led to poverty reduction, though not eradicated it, but at the expense of environmental degradation. Currently, the environmental ceiling is exceeded for degraded water quality at both localities even though the least well-met social standards are for available piped water and sanitation. The conjunction of these social needs and environmental constraints around the issue of water access and quality illustrates the broader value of the safe and just operating space approach for sustainable development

    Origin and fate of dissolved organic matter in four shallow Baltic Sea estuaries

    Get PDF
    Coastal waters have strong gradients in dissolved organic matter (DOM) quantity and characteristics, originating from terrestrial inputs and autochthonous production. Enclosed seas with high freshwater input therefore experience high DOM concentrations and gradients from freshwater sources to more saline waters. The brackish Baltic Sea experiences such salinity gradients from east to west and from river mouths to the open sea. Furthermore, the catchment areas of the Baltic Sea are very diverse and vary from sparsely populated northern areas to densely populated southern zones. Coastal systems vary from enclosed or open bays, estuaries, fjords, archipelagos and lagoons where the residence time of DOM at these sites varies and may control the extent to which organic matter is biologically, chemically or physically modified or simply diluted with transport off-shore. Data of DOM with simultaneous measurements of dissolved organic (DO) nitrogen (N), carbon (C) and phosphorus (P) across a range of contrasting coastal systems are scarce. Here we present data from the Roskilde Fjord, Vistula and Öre estuaries and Curonian Lagoon; four coastal systems with large differences in salinity, nutrient concentrations, freshwater inflow and catchment characteristics. The C:N:P ratios of DOM of our data, despite high variability, show site specific significant differences resulting largely from differences residence time. Microbial processes seemed to have minor effects, and only in spring did uptake of DON in the Vistula and Öre estuaries take place and not at the other sites or seasons. Resuspension from sediments impacts bottom waters and the entire shallow water column in the Curonian Lagoon. Finally, our data combined with published data show that land use in the catchments seems to impact the DOC:DON and DOC:DOP ratios of the tributaries most.peerReviewe

    Connecting the Dots: Responses of Coastal Ecosystems to Changing Nutrient Concentrations

    Get PDF
    Empirical relationships between phytoplankton biomass and nutrient concentrations established across a wide range of different ecosystems constitute fundamental quantitative tools for predicting effects of nutrient management plans. Nutrient management plans based on such relationships, mostly established over trends of increasing rather than decreasing nutrient concentrations, assume full reversibility of coastal eutrophication. Monitoring data from 28 ecosystems located in four well-studied regions were analyzed to study the generality of chlorophyll a versus nutrient relationships and their applicability for ecosystem management. We demonstrate significant differences across regions as well as between specific coastal ecosystems within regions in the response of chlorophyll a to changing nitrogen concentrations. We also show that the chlorophyll a versus nitrogen relationships over time constitute convoluted trajectories rather than simple unique relationships. The ratio of chlorophyll a to total nitrogen almost doubled over the last 30-40 years across all regions. The uniformity of these trends, or shifting baselines, suggest they may result from large-scale changes, possibly associated with global climate change and increasing human stress on coastal ecosystems. Ecosystem management must, therefore, develop adaptation strategies to face shifting baselines and maintain ecosystem services at a sustainable level rather than striving to restore an ecosystem state of the past. © 2011 American Chemical Society.This research is a contribution to the Thresholds Integrated Project (contract FP6-003933-2) and WISER (contract FP7-226273), funded by the European Commission.Peer Reviewe

    Factors regulating the coastal nutrient filter in the Baltic Sea

    Get PDF
    The coastal zone of the Baltic Sea is diverse with strong regional differences in the physico-chemical setting. This diversity is also reflected in the importance of different biogeochemical processes altering nutrient and organic matter fluxes on the passage from land to sea. This review investigates the most important processes for removal of nutrients and organic matter, and the factors that regulate the efficiency of the coastal filter. Nitrogen removal through denitrification is high in lagoons receiving large inputs of nitrate and organic matter. Phosphorus burial is high in archipelagos with substantial sedimentation, but the stability of different burial forms varies across the Baltic Sea. Organic matter processes are tightly linked to the nitrogen and phosphorus cycles. Moreover, these processes are strongly modulated depending on composition of vegetation and fauna. Managing coastal ecosystems to improve the effectiveness of the coastal filter can reduce eutrophication in the open Baltic Sea.peerReviewe
    corecore