77 research outputs found

    Higher Order Bose-Einstein Correlations test the Gaussian Density Matrix Approach

    Full text link
    A multiparticle system produced by a large number of independent sources is described by a gaussian density matrix W. All theoretical approach to Bose-Einstein Correlatios Cn in high energy physics use this form for W. One of the most salient consequences of this form is the fact that all higher order (n>2) moments of the current distribution can be expressed in terms of the first two. We test this property by comparing the data on C2(Q^2), C3(Q^2) and C4(Q^2) from pion-p and K-p reactions at 250 GeV/c with the predictions of a general quantum statistical space-time approach. Even a simplified version of such approach can account for the data. Previous attempts along these lines, which did not use the space-time approach, met with difficulties.Comment: 17 pages (including one Table) and 2 figures. To appear in Physics Letters B (PLB 13397

    Hydrodynamical Beam Jets in High Energy Hadronic Collisions

    Get PDF
    A study of hadronic data up to TEVATRON energies in terms of relativistic hydrodynamics indicates an extended 1-dimensional stage of the expansion which suggests a jet like behaviour of the fireball along the collision axis.Comment: 3 pages (1 page of figures) ,(LATEX), GSI-93-2

    The Fractal Properties of the Source and BEC

    Get PDF
    Using simple space-time implementation of the random cascade model we investigate numerically influence of the possible fractal structure of the emitting source on Bose-Einstein correlations between identical particles. The results are then discussed in terms of the non-extensive Tsallis statistics.Comment: LaTeX file and 2 PS files with figures, 8 pages altogether. Talk presented at the 12th Indian Summer School "Relativistic Heavy Ion Physics, Prague, Czech Republic, 30 August-3 Sept. 1999; to be published in Czech J. Phys. (1999). Some typos correcte

    Bounds for Bose-Einstein Correlation Functions

    Full text link
    Bounds for the correlation functions of identical bosons are discussed for the general case of a Gaussian density matrix. In particular, for a purely chaotic system the two-particle correlation function must always be greater than one. On the other hand, in the presence of a coherent component the correlation function may take values below unity. The experimental situation is briefly discussed.Comment: 7 pages, LaTeX, DMR-THEP-93-5/

    DCC dynamics with the SU(3) linear sigma model

    Get PDF
    The SU(3) extension of the linear sigma model is employed to elucidate the effect of including strangeness on the formation of disoriented chiral condensates. By means of a Hartree factorization, approximate dispersion relations for the 18 scalar and pseudoscalar meson species are derived and their self-consistent solution makes it possible to trace out the thermal path of the two order parameters as well as delineate the region of instability within which spontaneous pair creation becomes possible. The results depend significantly on the employed sigma mass, with the highest values yielding the largest regions of instability. An approximate solution of the equations of motion for the order parameter in scenarios emulating uniform scaling expansions show that even with a rapid quench only the pionic modes grow unstable. Nevertheless, the rapid and oscillatory relaxation of the order parameters leads to enhanced production of both pions and (to a lesser degree) kaons.Comment: 29 pages, RevTeX, 11 postscript figures, discussion about anomaly term adde

    Correlation search for coherent pion emission in heavy ion collisions

    Full text link
    The methods allowing to extract the coherent component of pion emission conditioned by the formation of a quasi-classical pion source in heavy ion collisions are suggested. They exploit a nontrivial modification of the quantum statistical and final state interaction effects on the correlation functions of like and unlike pions in the presence of the coherent radiation. The extraction of the coherent pion spectrum from pi+pi-, pi+pi+ and pi-pi- correlation functions and single--pion spectra is discussed in detail for large expanding systems produced in ultra-relativistic heavy ion collisions.Comment: 21 pages, 3 eps figures, ReVTeX, corrected submission abstract. Version published in PRC 65 (2002) 064904. Added is a detailed explanation of the differences between pure coherent states and charge constrained coherent states in the case of a simple example model. The expressions for two-particle spectra taking into account both the final state interaction and the coherent component of pion emission are derived in a more general and transparent wa

    Various Models for Pion Probability Distributions from Heavy-Ion Collisions

    Get PDF
    Various models for pion multiplicity distributions produced in relativistic heavy ion collisions are discussed. The models include a relativistic hydrodynamic model, a thermodynamic description, an emitting source pion laser model, and a description which generates a negative binomial description. The approach developed can be used to discuss other cases which will be mentioned. The pion probability distributions for these various cases are compared. Comparison of the pion laser model and Bose-Einstein condensation in a laser trap and with the thermal model are made. The thermal model and hydrodynamic model are also used to illustrate why the number of pions never diverges and why the Bose-Einstein correction effects are relatively small. The pion emission strength η\eta of a Poisson emitter and a critical density ηc\eta_c are connected in a thermal model by η/nc=e−m/T<1\eta/n_c = e^{-m/T} < 1, and this fact reduces any Bose-Einstein correction effects in the number and number fluctuation of pions. Fluctuations can be much larger than Poisson in the pion laser model and for a negative binomial description. The clan representation of the negative binomial distribution due to Van Hove and Giovannini is discussed using the present description. Applications to CERN/NA44 and CERN/NA49 data are discussed in terms of the relativistic hydrodynamic model.Comment: 12 pages, incl. 3 figures and 4 tables. You can also download a PostScript file of the manuscript from http://p2hp2.lanl.gov/people/schlei/eprint.htm

    Genuine Correlations of Like-Sign Particles in Hadronic Z0 Decays

    Get PDF
    Correlations among hadrons with the same electric charge produced in Z0 decays are studied using the high statistics data collected from 1991 through 1995 with the OPAL detector at LEP. Normalized factorial cumulants up to fourth order are used to measure genuine particle correlations as a function of the size of phase space domains in rapidity, azimuthal angle and transverse momentum. Both all-charge and like-sign particle combinations show strong positive genuine correlations. One-dimensional cumulants initially increase rapidly with decreasing size of the phase space cells but saturate quickly. In contrast, cumulants in two- and three-dimensional domains continue to increase. The strong rise of the cumulants for all-charge multiplets is increasingly driven by that of like-sign multiplets. This points to the likely influence of Bose-Einstein correlations. Some of the recently proposed algorithms to simulate Bose-Einstein effects, implemented in the Monte Carlo model PYTHIA, are found to reproduce reasonably well the measured second- and higher-order correlations between particles with the same charge as well as those in all-charge particle multiplets.Comment: 26 pages, 6 figures, Submitted to Phys. Lett.
    • 

    corecore