2,582 research outputs found

    Comparing retinal structure in patients with achromatopsia and blue cone monochromacy using optical coherence tomography

    Get PDF
    PURPOSE: To compare foveal hypoplasia and the appearance of the ellipsoid zone (EZ) at the fovea in patients with genetically confirmed achromatopsia (ACHM) and blue cone monochromacy (BCM). DESIGN: Retrospective, multi-center observational study. SUBJECTS: Molecularly confirmed patients with ACHM (n = 89) and BCM (n = 33). METHODS: We analyzed high-resolution spectral domain optical coherence tomography (SD-OCT) images of the macula from aforementioned patients with BCM. Three observers independently graded SD-OCT images for foveal hypoplasia (i.e. retention of one or more inner retinal layers at the fovea) and four observers judged the integrity of the EZ at the fovea, based on an established grading scheme. These measures were compared with previously published data from the ACHM patients. MAIN OUTCOME MEASURES: Presence of foveal hypoplasia and EZ grade. RESULTS: Foveal hypoplasia was significantly more prevalent in ACHM than in BCM (p<0.001). In addition, we observed a significant difference in the distribution of EZ grades between ACHM and BCM, with grade II EZ being by far the most common phenotype in BCM (61% of patients). In contrast, ACHM patients had a relatively equal prevalence of EZ grades I, II, and IV. Interestingly, grade IV EZ was 2.6 times more prevalent in ACHM compared to BCM, while grade V EZ (macular atrophy) was present in 3% of both the ACHM and BCM cohorts. CONCLUSIONS: The higher incidence of foveal hypoplasia in ACHM than BCM supports a role for cone activity in foveal development. Although there are differences in EZ grades between these conditions, the degree of overlap suggests EZ grade is not sufficient for definitive diagnosis, in contrast to previous reports. Analysis of additional OCT features in similar cohorts may reveal differences with greater diagnostic value. Finally, the extent to which foveal hypoplasia or EZ grade is prognostic for therapeutic potential in either group remains to be seen, but motivates further study

    Optical Coherence Tomography Artifacts Are Associated With Adaptive Optics Scanning Light Ophthalmoscopy Success in Achromatopsia

    Get PDF
    Purpose: To determine whether artifacts in optical coherence tomography (OCT) images are associated with the success or failure of adaptive optics scanning light ophthalmoscopy (AOSLO) imaging in subjects with achromatopsia (ACHM). / Methods: Previously acquired OCT and non-confocal, split-detector AOSLO images from one eye of 66 subjects with genetically confirmed achromatopsia (15 CNGA3 and 51 CNGB3) were reviewed along with best-corrected visual acuity (BCVA) and axial length. OCT artifacts in interpolated vertical volumes from CIRRUS macular cubes were divided into four categories: (1) none or minimal, (2) clear and low frequency, (3) low amplitude and high frequency, and (4) high amplitude and high frequency. Each vertical volume was assessed once by two observers. AOSLO success was defined as sufficient image quality in split-detector images at the fovea to assess cone quantity. / Results: There was excellent agreement between the two observers for assessing OCT artifact severity category (weighted kappa = 0.88). Overall, AOSLO success was 47%. For subjects with OCT artifact severity category 1, AOSLO success was 65%; for category 2, 47%; for category 3, 11%; and for category 4, 0%. There was a significant association between OCT artifact severity category and AOSLO success (P = 0.0002). Neither BCVA nor axial length was associated with AOSLO success (P = 0.07 and P = 0.75, respectively). / Conclusions: Artifacts in OCT volumes are associated with AOSLO success in ACHM. Subjects with less severe OCT artifacts are more likely to be good candidates for AOSLO imaging, whereas AOSLO was successful in only 7% of subjects with category 3 or 4 OCT artifacts. These results may be useful in guiding patient selection for AOSLO imaging. / Translational Relevance: Using OCT to prescreen patients could be a valuable tool for clinical trials that utilize AOSLO to reduce costs and decrease patient testing burden

    Use of a Semi-field System to Evaluate the Efficacy of Topical Repellents under user Conditions Provides a Disease Exposure free Technique Comparable with Field Data.

    Get PDF
    Before topical repellents can be employed as interventions against arthropod bites, their efficacy must be established. Currently, laboratory or field tests, using human volunteers, are the main methods used for assessing the efficacy of topical repellents. However, laboratory tests are not representative of real life conditions under which repellents are used and field-testing potentially exposes human volunteers to disease. There is, therefore, a need to develop methods to test efficacy of repellents under real life conditions while minimizing volunteer exposure to disease. A lotion-based, 15% N, N-Diethyl-3-methylbenzamide (DEET) repellent and 15% DEET in ethanol were compared to a placebo lotion in a 200 sq m (10 m x 20 m) semi-field system (SFS) against laboratory-reared Anopheles arabiensis mosquitoes and in full field settings against wild malaria vectors and nuisance-biting mosquitoes. The average percentage protection against biting mosquitoes over four hours in the SFS and field setting was determined. A Poisson regression model was then used to determine relative risk of being bitten when wearing either of these repellents compared to the placebo. Average percentage protection of the lotion-based 15% DEET repellent after four hours of mosquito collection was 82.13% (95% CI 75.94-88.82) in the semi-field experiments and 85.10% (95% CI 78.97-91.70) in the field experiments. Average percentage protection of 15% DEET in ethanol after four hours was 71.29% (CI 61.77-82.28) in the semi-field system and 88.24% (84.45-92.20) in the field. Semi-field evaluation results were comparable to full-field evaluations, indicating that such systems could be satisfactorily used in measuring efficacy of topically applied mosquito repellents, thereby avoiding risks of exposure to mosquito-borne pathogens, associated with field testing

    Interocular Symmetry of Foveal Cone Topography in Congenital Achromatopsia

    Get PDF
    PURPOSE: To determine interocular symmetry of foveal cone topography in achromatopsia (ACHM) using non-confocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO). METHODS: Split-detector AOSLO images of the foveal cone mosaic were acquired from both eyes of 26 subjects (mean age 24.3 years; range 8 - 44 years, 14 females) with genetically confirmed CNGA3- or CNGB3-associated ACHM. Cones were identified within a manually delineated rod-free zone. Peak cone density (PCD) was determined using an 80 × 80 μm sampling window within the rod-free zone. The mean and standard deviation (SD) of intercell distance (ICD) were calculated to derive the coefficient of variation (CV). Cone density difference maps were generated to compare cone topography between eyes. RESULTS: PCD (mean ± SD) was 17,530 ± 9,614 cones/mm2 and 17,638 ± 9,753 cones/mm2 for right and left eyes, respectively (p = 0.677, Wilcoxon test). The mean (± SD) for ICD was 9.05 ± 2.55 µm and 9.24 ± 2.55 µm for right and left eyes, respectively (p = 0.410, paired t test). The mean (± SD) for CV of ICD was 0.16 ± 0.03 µm and 0.16 ± 0.04 µm for right and left eyes, respectively (p = 0.562, paired t test). Cone density maps demonstrated that cone topography of the ACHM fovea is non-uniform with local variations in cone density between eyes. CONCLUSIONS: These results demonstrate interocular symmetry of the foveal cone mosaic (both density and packing) in ACHM. As cone topography can differ between eyes of a subject, PCD does not completely describe the foveal cone mosaic in ACHM. Nonetheless, these findings are of value in longitudinal monitoring of patients during treatment trials and further suggest that both eyes of a given subject may have similar therapeutic potential and non-study eye can be used as a control

    The design-by-adaptation approach to universal access: learning from videogame technology

    Get PDF
    This paper proposes an alternative approach to the design of universally accessible interfaces to that provided by formal design frameworks applied ab initio to the development of new software. This approach, design-byadaptation, involves the transfer of interface technology and/or design principles from one application domain to another, in situations where the recipient domain is similar to the host domain in terms of modelled systems, tasks and users. Using the example of interaction in 3D virtual environments, the paper explores how principles underlying the design of videogame interfaces may be applied to a broad family of visualization and analysis software which handles geographical data (virtual geographic environments, or VGEs). One of the motivations behind the current study is that VGE technology lags some way behind videogame technology in the modelling of 3D environments, and has a less-developed track record in providing the variety of interaction methods needed to undertake varied tasks in 3D virtual worlds by users with varied levels of experience. The current analysis extracted a set of interaction principles from videogames which were used to devise a set of 3D task interfaces that have been implemented in a prototype VGE for formal evaluation
    corecore