12 research outputs found

    Understanding climate change impacts on biome and plant distributions in the Andes: Challenges and opportunities

    Get PDF
    Aim: Climate change is expected to impact mountain biodiversity by shifting species ranges and the biomes they shape. The extent and regional variation in these impacts are still poorly understood, particularly in the highly biodiverse Andes. Regional syntheses of climate change impacts on vegetation are pivotal to identify and guide research priorities. Here we review current data, knowledge and uncertainties in past, present and future climate change impacts on vegetation in the Andes. Location: Andes. Taxon: Plants. Methods: We (i) conducted a literature review on Andean vegetation responses to past and contemporary climatic change, (ii) analysed future climate projections for different elevations and slope orientations at 19 Andean locations using an ensemble of model outputs from the Coupled Model Intercomparison Project 5, and (iii) calculated changes in the suitable climate envelope area of Andean biomes and compared these results to studies that used species distribution models. Results: Future climatic changes (2040–2070) are projected to be stronger at high-elevation areas in the tropical Andes (up to 4°C under RCP 8.5), while in the temperate Andes temperature increases are projected to be up to 2°C. Under this worst-case scenario, temperate deciduous forests and the grasslands/steppes from the Central and Southern Andes are predicted to show the greatest losses of suitable climatic space (30% and 17%–23%, respectively). The high vulnerability of these biomes contrasts with the low attention from researchers modelling Andean species distributions. Critical knowledge gaps include a lack of an Andean wide plant checklist, insufficient density of weather stations at high-elevation areas, a lack of high-resolution climatologies that accommodates the Andes' complex topography and climatic processes, insufficient data to model demographic and ecological processes, and low use of palaeo data for distribution modelling. Main conclusions: Climate change is likely to profoundly affect the extent and composition of Andean biomes. Temperate Andean biomes in particular are susceptible to substantial area contractions. There are, however, considerable challenges and uncertainties in modelling species and biome responses and a pressing need for a region-wide approach to address knowledge gaps and improve understanding and monitoring of climate change impacts in these globally important biomes.publishedVersio

    Climate sensitivity studies over the southern hemisphere using the LMDZ/CIMA general circulation model

    No full text
    Este trabajo consiste, fundamentalmente, en la adaptación de un modelo de circulación general (el LMDZ/CIMA versión CIMA), para el estudio de la climatología del Hemisferio Sur. A fin de optimizar los campos medios simulados por el modelo sobre el Hemisferio Sur, se integraron tres experimentos. La experiencia "suave" difiere del "control" en el valor impuesto sobre el coeficiente de intercambio turbulento (Cd); mientras que la experiencia "zoom" es una sensibilidad a la distribución de los puntos del reticulado en la dirección meridional. De hecho, la experiencia de control indicó que la simulación de los campos medios básicos del Hemisferio Sur con el modelo en su versión original, no es del todo apropiada. Sin embargo, el ajuste del coeficiente Cd efectuado en el experimento "suave" mejoró la representación de la vaguada circumpolar, incrementando significativamente la intensidad de los ciclones marinos de latitudes medias, aunque poco modificó la estructura del jet invernal. La definición de una malla con zoom meridional, mejoró significativamente la representación de la presión a nivel del mar y del jet austral, dada la particular sensibilidad de las variables dinámicas a la resolución horizontal. Sin embargo, las falencias en la representación de las variables físicas (como la precipitación) parecen más dependientes de las parametrizaciones físicas, que de la resolución en sí misma. En un posterior esfuerzo por profundizar la validación del modelo en su versión con zoom, se observó que la energía cinética total es subestimada, principalmente debido a la inadecuada representación las perturbaciones transientes. La baja resolución del modelo es un factor determinante para la simulación de este campo. No obstante, el modelo reprodujo aceptablemente el flujo medio zonal de calor y de cantidad de movimiento por las perturbaciones transientes. En líneas generales se observó que la simulación de la baroclinicidad del flujo medio aproxima adecuadamente a la baroclinicidad del campo observado. No obstante, la energía cinética de las perturbaciones transientes es pobre, debido a la inadecuada representación del término de conversión baroclínica. Sin embargo, el modelo es capaz de reproducir el efecto de las perturbaciones sobre el flujo medio: las perturbaciones tienden a acelerar al flujo medio zonal al sur de 30º S. Asimismo, se validó la representación de la componente asimétrica del flujo medio, la cual presenta la estructura fuertemente barotrópica de las ondas observadas, aunque falla en modelar la propagación vertical de las mismas, debido a la baja resolución vertical del modelo (solo posee dos niveles estratosféricos). Con el fin de estudiar el alcance de los resultados obtenidos a través de la técnica de la inclusión del zoom meridional, se realizaron una serie de experimentos de sensibilidad a la resolución horizontal (baja, media y alta resolución). Los mismos fueron llevados a cabo con el modelo en su versión con zoom y sin zoom. De esta intercomparación surgió que: i) la introducción de un zoom en la región de los máximos gradientes de circulación no genera perturbaciones numéricas espúreas, sino que ii) favorece la representación de los campos simulados a punto tal que, un experimento con zoom en una resolución horizontal dada, produce campos comparables a los provenientes de una experiencia con malla regular pero con una resolución horizontal 50% mayor (sin incrementar los costos computacionales del experimento). Posteriormente, con el objeto de profundizar la validación del MCG LMDZ/CIMA, en cuanto a la representación de posibles estados climáticos futuros, se trabajó en la intercomparación de sus campos, con algunos campos medios provenientes de la integración de otros modelos. Se concluyó que el modelo LMDZ/CIMA es capaz de simular los procesos de interacción relevantes al estudio del cambio climático. Finalmente, se diseñó un experimento de sensibilidad forzado por un gradiente meridional anómalo en las temperaturas de la superficie del mar extratropical. Se observó que la circulación atmosférica responde al forzante anómalo impuesto en latitudes extratropicales, con el desplazamiento del jet polar hacia el norte. Particularmente se advierte que, el debilitamiento del transporte de cantidad de movimiento en latitudes extratropicales, sería el responsable del debilitamiento de la rama subpolar del jet y del fortalecimiento la rama subtropical. Cabe señalar que los resultados de este experimento de sensibilidad climática son coincidentes con estudios previos de remoción del hielo marino en los alrededores del continente antártico; aunque distintos a los resultados de otros autores que realizaron experimentos de calentamiento global. Estos resultados indicarían que los efectos derivados del incremento del vapor de agua en la atmósfera y de la intensificación del gradiente meridional de temperatura en altura, podrían ser de mayor relevancia al cambio climático, que la modificación del gradiente meridional de temperatura de superficie.This thesis is mainly concerned with the adaptation of the LMDZ/CIMA General Circulation Model, in order to be able to study the Southern Hemisphere climatology. The first step of this work was to make the necessary adjustments to improve the representation of the mean fields. Three experiments were designed. The "smooth" experiment differs from the "control" one in the value imposed to the drag coefficient Cd; and the "zoom" experiment is an experiment with stretched grid scheme. In fact, the control experiment shows that the Southern Hemisphere simulation is not appropriate. Nevertheless, the tuning into the drag coefficient improved the subpolar throught representation. The "zoom" experiment improved the representation of the sea level pressure and the polar jet. Nevertheless, the physical variable misrepresentations appeares to be more related to the physical parameterizations than the resolution itself. The "zoom" experiment underestimates the representation of the transients disturbances, maybe because of the model coarse resolution. However, it reproduces acceptably the heat and angular momentum transients fluxes. In general, it is observed that the mean flow baroclinicity is well represented. However, the kinetic energy of the transient disturbances is underestimated, due to the inadequate representation of the baroclinic conversion term. Nevertheless, the model reproduces the effects of the eddies on the mean flow: the disturbances tend to accelerate the westerlies south of 30ºS. The zoom version model also represents the barotropic structure of the southern stationary waves, but not the vertical propagation of the waves due to its coarse vertical resolution. In order to determine the benefits of having applied the stretched grid scheme technique, horizontal resolution experiments were done (low, medium and high-resolution). These experiments were carried out with zoom and with regular grid. The results of this intercomparison showed that: i) the zoom introduction does not generate numerical disturbances, and ii) it is observed that the zoom experiments with a specified horizontal resolution compare well with those of regular grid and 50% greater resolution, without increasing the computational costs. In order to test the ability of LMDZ/CIMA GCM to reproduce different climate scenarios, an intercomparison with other model simulations were performed. It was found that the LMDZ/CIMA model is able to represent the interaction processes involved on the climate change. Finally, a sensitivity experiment forced by anomalous extratropical meridional gradient of sea surface temperature was designed. It was observed that the atmospheric circulation responds to the imposed anomalous temperatures, with a northern displacement of the polar jet. Particularly, it was conclude that the weakening of the transient momentum transport would induce the weakening of the subpolar jet and the intensification of the subtropical jet. It was found that the sensitivity experiment resembles to previous studies of Antarctic marine ice removal, whereas it differs than other experiments of global warming. This result could be explain by the fact that the increase of water-vapor and to the intensification of the temperature gradient at height levels, could be more relevant to the atmospheric circulation than the change in the meridional gradient of sea surface temperatures.Fil:Carril, Andrea F.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    The influence of South American regional climate on the simulation of the Southern Hemisphere extratropical circulation

    No full text
    International audienceThis paper presents new modeling evidence showing the added value of high-resolution information from South America (SA) in the simulation of the Southern Hemisphere (SH) extratropical circulation. LMDZ, a coarse-resolution atmospheric global general circulation model constitutes the main tool for this investigation. Parallel to the control simulation, a two-way nesting (TWN) simulation of LMDZ is performed with an interactive coupling to the same model, but with a higher-resolution zoom over SA. The third simulation is a perfect boundary simulation for which re-analysis information from ERA-Interim is used to nudge LMDZ, but only over SA. Results indicate that enhanced resolution over SA improves the representation of the most important processes that influence extratropical eddy activity. The local improvement is followed by a better representation of the global extratropical circulation, especially in austral summer. The regional climate enhancement over SA has positive effects on simulation of the midlatitude jet position during the austral summer by significantly reducing the bias of the mean zonal kinetic energy outside the nudged zone. On the other hand, the wintertime general circulation outside the nudged-zone shows a limited bias-reduction for the regional-driven simulations, especially in the case of the TWN system. However, improvements of the TWN system compared to the control experiment are noticed in early stages of cyclone lifecycle, as it is identified in a better simulation of transient meridional heat transport and transient kinetic energy intensity. The findings of the present study suggest, thus, that improvements in resolution over SA effectively excite the simulation of the mean atmospheric circulation in the SH

    Observed and projected hydroclimate changes in the Andes

    Get PDF
    The Andes is the most biodiverse region across the globe. In addition, some of the largest urban areas in South America are located within this region. Therefore, ecosystems and human population are affected by hydroclimate changes reported at global, regional and local scales. This paper summarizes progress of knowledge about long-term trends observed during the last two millennia over the entire Andes, with more detail for the period since the second half of the 20th century, and presents a synthesis of climate change projections by the end of the 21st century. In particular, this paper focuses on temperature, precipitation and surface runoff in the Andes. Changes in the Andean cryosphere are not included here since this particular topic is discussed in other paper in this Frontiers special issue, and elsewhere (e.g. IPCC, 2019b). While previous works have reviewed the hydroclimate of South America and particular sectors (i.e., Amazon and La Plata basins, the Altiplano, Northern South America, etc.) this review includes for the first time the entire Andes region, considering all latitudinal ranges: tropical (North of 27 S), subtropical (27 S37 S) and extratropical (South of 37 S). This paper provides a comprehensive view of past and recent changes, as well as available climate change projections, over the entire Andean range. From this review, the main knowledge gaps are highlighted and urgent research necessities in order to provide more mechanistic understanding of hydroclimate changes in the Andes and more confident projections of its possible changes in association with global climate change

    The potential added value of Regional Climate Models in South America using a multiresolution approach

    No full text
    International audienceThis paper aims to identify those regions within the South American continent where the Regional Climate Models (RCMs) have the potential to add value (PAV) compared to their coarser-resolution global forcing. For this, we used a spatial-scale filtering method based on the wavelet theory to distinguish the regional climatic signal present in atmospheric surface fields from observed data (CPC and TRMM) and 6 RCM simulations belonging to the CORDEX Project. The wavelet used for filtering was Haar wavelet, but a comparative analysis with Daubechies 4 wavelet indicated that meteorological fields or regional indices were not very sensitive to the wavelet selected. Once the longer wavelengths were filtered, we focused on analyzing the spatial variability of extreme rainfall and the spatiotemporal variability of maximum and minimum surface air temperature on a daily basis. The results obtained suggest essential differences in the spatial distribution of the small-scale signal of extreme precipitation between TRMM and regional models, together with a large dispersion between models. While TRMM and CPC register a large signal throughout the continent, the RCMs place it over the Andes Cordillera and some over tropical South America. PAV signal for surface air temperature was found over the Andes Cordillera and the Brazilian Highlands, which are regions characterized by complex topography, and also on the coasts of the continent. The signal came specially from the small-scale stationary component. The transient part is much smaller than the stationary one, except over la Plata Basin where they are of the same order of magnitude. Also, the RCMs and CPC showed a large spread between them in representing this transient variability. The results confirm that RCMs have the potential to add value in the representation of extreme precipitation and the mean surface temperature in South America. However, this condition is not applicable throughout the whole continent but is particularly relevant in those terrestrial regions where the surface forcing is strong, such as the Andes Cordillera or the coasts of the continent

    Performance of a multi-RCM ensemble for South Eastern South America

    No full text
    International audienceThe ability of four regional climate models to reproduce the present-day South American climate is examined with emphasis on La Plata Basin. Models were integrated for the period 1991-2000 with initial and lateral boundary conditions from ERA-40 Reanalysis. The ensemble sea level pressure, maximum and minimum temperatures and precipitation are evaluated in terms of seasonal means and extreme indices based on a percentile approach. Dispersion among the individual models and uncertainties when comparing the ensemble mean with different climatologies are also discussed. The ensemble mean is warmer than the observations in South Eastern South America (SESA), especially for minimum winter temperatures with errors increasing in magnitude towards the tails of the distributions. The ensemble mean reproduces the broad spatial pattern of precipitation, but overestimates the convective precipitation in the tropics and the orographic precipitation along the Andes and over the Brazilian Highlands, and underestimates the precipitation near the monsoon core region. The models overestimate the number of wet days and underestimate the daily intensity of rainfall for both seasons suggesting a premature triggering of convection. The skill of models to simulate the intensity of convective precipitation in summer in SESA and the variability associated with heavy precipitation events (the upper quartile daily precipitation) is far from satisfactory. Owing to the sparseness of the observing network, ensemble and observations uncertainties in seasonal means are comparable for some regions and seasons

    Precipitation extremes over La Plata Basin - Review and new results from observations and climate simulations

    No full text
    Monthly and daily precipitation extremes over La Plata Basin (LPB) are analyzed in the framework of the CLARIS-LPB Project. A review of the studies developed during the project and results of additional research are presented and discussed. Specific aspects of analysis are focused on large-scale versus local processes impacts on the intensity and frequency of precipitation extremes over LPB, and on the assessment of specific wet and dry spell indices and their changed characteristics in future climate scenarios. The analysis is shown for both available observations of precipitation in the region and ad-hoc global and regional models experiments. The Pacific, Indian and Atlantic Oceans can all impact precipitation intensity and frequency over LPB. In particular, considering the Pacific sector, different types of ENSO events (i.e. canonical vs Modoki or East vs Central) have different influences. Moreover, model projections indicate an increase in the frequency of precipitation extremes over LPB during El Niño and La Ninã events in future climate. Local forcings can also be important for precipitation extremes. Here, the feedbacks between soil moisture and extreme precipitation in LPB are discussed based on hydric conditions in the region and model sensitivity experiments. Concerning droughts, it was found that they were more frequent in the western than in the eastern sector of LPB during the period of 1962-2008. On the other hand, observations and model experiments agree in that the monthly wet extremes were more frequent than the dry extremes in the northern and southern LPB sectors during the period 1979-2001, with higher frequency in the south.Fil: Cavalcanti, I. F. A.. Centro de Previsao de Tempo e Estudos Climáticos. Instituto Nacional de Pesquisas Espaciais; BrasilFil: Carril, Andrea Fabiana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Penalba, Olga Clorinda. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Grimm, A. M.. Universidade Federal do Paraná; BrasilFil: Menendez, Claudio Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Sanchez, E.. Universidad de Castilla-La Mancha; EspañaFil: Cherchi, A.. No especifíca;Fil: Sörensson, Anna. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Robledo, Federico Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Rivera, Juan Antonio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pántano, Vanesa Cristina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bettolli, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Zaninelli, Pablo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Zamboni, L.. Argonne National Laboratory. Material Science División; Estados UnidosFil: Tedeschi, R. G.. Centro de Previsao de Tempo e Estudos Climáticos. Instituto Nacional de Pesquisas Espaciais; BrasilFil: Dominguez, M.. Universidad de Castilla-La Mancha; EspañaFil: Ruscica, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; ArgentinaFil: Flach, R.. Universidade Federal do Paraná; Brasi

    Understanding climate change impacts on biome and plant distributions in the Andes: Challenges and opportunities

    No full text
    Aim: Climate change is expected to impact mountain biodiversity by shifting species ranges and the biomes they shape. The extent and regional variation in these impacts are still poorly understood, particularly in the highly biodiverse Andes. Regional syntheses of climate change impacts on vegetation are pivotal to identify and guide research priorities. Here we review current data, knowledge and uncertainties in past, present and future climate change impacts on vegetation in the Andes. Location: Andes. Taxon: Plants. Methods: We (i) conducted a literature review on Andean vegetation responses to past and contemporary climatic change, (ii) analysed future climate projections for different elevations and slope orientations at 19 Andean locations using an ensemble of model outputs from the Coupled Model Intercomparison Project 5, and (iii) calculated changes in the suitable climate envelope area of Andean biomes and compared these results to studies that used species distribution models. Results: Future climatic changes (2040–2070) are projected to be stronger at high-elevation areas in the tropical Andes (up to 4°C under RCP 8.5), while in the temperate Andes temperature increases are projected to be up to 2°C. Under this worst-case scenario, temperate deciduous forests and the grasslands/steppes from the Central and Southern Andes are predicted to show the greatest losses of suitable climatic space (30% and 17%–23%, respectively). The high vulnerability of these biomes contrasts with the low attention from researchers modelling Andean species distributions. Critical knowledge gaps include a lack of an Andean wide plant checklist, insufficient density of weather stations at high-elevation areas, a lack of high-resolution climatologies that accommodates the Andes' complex topography and climatic processes, insufficient data to model demographic and ecological processes, and low use of palaeo data for distribution modelling. Main conclusions: Climate change is likely to profoundly affect the extent and composition of Andean biomes. Temperate Andean biomes in particular are susceptible to substantial area contractions. There are, however, considerable challenges and uncertainties in modelling species and biome responses and a pressing need for a region-wide approach to address knowledge gaps and improve understanding and monitoring of climate change impacts in these globally important biomes
    corecore