43 research outputs found

    Rôle du système endocrinien de la vitamine D³ sur l'induction de cytochromes P450 hépatiques impliquées dans la détoxication-cytoprotection

    Full text link
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    Antitumor Activity and Mechanism of Action of the Cyclopenta[b]benzofuran, Silvestrol

    Get PDF
    BACKGROUND. Flavaglines are a family of natural products from the genus Aglaia that exhibit anti-cancer activity in vitro and in vivo and inhibit translation initiation. They have been shown to modulate the activity of eIF4A, the DEAD-box RNA helicase subunit of the eukaryotic initiation factor (eIF) 4F complex, a complex that stimulates ribosome recruitment during translation initiation. One flavagline, silvestrol, is capable of modulating chemosensitivity in a mechanism-based mouse model. METHODOLOGY/PRINCIPAL FINDINGS. Among a number of flavagline family members tested herein, we find that silvestrol is the more potent translation inhibitor among these. We find that silvestrol impairs the ribosome recruitment step of translation initiation by affecting the composition of the eukaryotic initiation factor (eIF) 4F complex. We show that silvestrol exhibits significant anticancer activity in human breast and prostate cancer xenograft models, and that this is associated with increased apoptosis, decreased proliferation, and inhibition of angiogenesis. We demonstrate that targeting translation by silvestrol results in preferential inhibition of weakly initiating mRNAs. CONCLUSIONS/SIGNIFICANCE. Our results indicate that silvestrol is a potent anti-cancer compound in vivo that exerts its activity by affecting survival pathways as well as angiogenesis. We propose that silvestrol mediates its effects by preferentially inhibiting translation of malignancy-related mRNAs. Silvestrol appears to be well tolerated in animals.Canadian Institutes of Health Research (16512, Cancer Consortium Training Grant Award, CancerConsortium Training Grant Award); US Lymphoma Foundation Award; National Institute of Health (RO1 GM073855); National Crime Information Center (017099); Cole Foundation Awar

    Altering Chemosensitivity by Modulating Translation Elongation

    Get PDF
    BACKGROUND: The process of translation occurs at a nexus point downstream of a number of signal pathways and developmental processes. Modeling activation of the PTEN/AKT/mTOR pathway in the Emu-Myc mouse is a valuable tool to study tumor genotype/chemosensitivity relationships in vivo. In this model, blocking translation initiation with silvestrol, an inhibitor of the ribosome recruitment step has been showed to modulate the sensitivity of the tumors to the effect of standard chemotherapy. However, inhibitors of translation elongation have been tested as potential anti-cancer therapeutic agents in vitro, but have not been extensively tested in genetically well-defined mouse tumor models or for potential synergy with standard of care agents. METHODOLOGY/PRINCIPAL FINDINGS: Here, we chose four structurally different chemical inhibitors of translation elongation: homoharringtonine, bruceantin, didemnin B and cycloheximide, and tested their ability to alter the chemoresistance of Emu-myc lymphomas harbouring lesions in Pten, Tsc2, Bcl-2, or eIF4E. We show that in some genetic settings, translation elongation inhibitors are able to synergize with doxorubicin by reinstating an apoptotic program in tumor cells. We attribute this effect to a reduction in levels of pro-oncogenic or pro-survival proteins having short half-lives, like Mcl-1, cyclin D1 or c-Myc. Using lymphomas cells grown ex vivo we reproduced the synergy observed in mice between chemotherapy and elongation inhibition and show that this is reversed by blocking protein degradation with a proteasome inhibitor. CONCLUSION/SIGNIFICANCE: Our results indicate that depleting short-lived pro-survival factors by inhibiting their synthesis could achieve a therapeutic response in tumors harboring PTEN/AKT/mTOR pathway mutations

    Phosphoproteome dysregulation in cancers : consequences on the transcriptional activity and the degradation of retinoic acid receptors (RAR)

    No full text
    L’acide rétinoïque (AR) agit via des récepteurs nucléaires (RAR) qui sont des facteurs de transcription inductibles par le ligand. Il active aussi des cascades de kinases qui ciblent les RAR et modulent leur activité transcriptionnelle. Cependant, l’ensemble des protéines phosphorylées en réponse à l’AR de même que les conséquences des dérégulations du « kinome » sur les effets l’AR et le fonctionnement des RAR demeurent mal connus. J’ai comparé les effets de l’AR sur le phosphoprotéome de deux lignées de cellules de cancer du sein : MCF7, qui est sensible à l’AR, et BT474, qui surexprime le récepteur a activité tyrosine kinase erbB-2 et est résistante à l’AR. De nombreuses différences ont été observées avec des répercussions sur l’expression des gènes de même que sur la phosphorylation, le recrutement aux promoteurs des gènes cibles et la dégradation de RAR alpha par le protéasome. J’ai aussi montré que la dégradation de RAR alpha met en jeu TRIM24 qui contrôle sa déubiquitination.Retinoic acid (RA) acts by binding to specific nuclear receptors (RARs), which are ligand-dependant transcription factors. RA also has non-genomic effects and activates kinase cascades that target RARs and modulate their transcriptional activity. However, the proteins that are phosphorylated in response to RA remain to be identified. The consequences of dysregulations of the "kinome" on the non-genomic effects of RA and on RAR function also require further investigation. I compared the effect of RA on the phosphoproteome of two breast cancer cell lines: MCF7, which is RA-sensitive, and BT474, a RA-resistant cell line that overexpresses the receptor tyrosine kinase erbB-2. Multiple differences were observed with consequences on gene expression as well as on phosphorylation, recruitment on target genes promoters and RARalpha degradation by the proteasome. In the context or RARalpha degradation, I showed the involvement of TRIM24 which controls RARα deubiquitination

    Phosphoproteome dysregulation in cancers : consequences on the transcriptional activity and the degradation of retinoic acid receptors (RAR)

    No full text
    L’acide rétinoïque (AR) agit via des récepteurs nucléaires (RAR) qui sont des facteurs de transcription inductibles par le ligand. Il active aussi des cascades de kinases qui ciblent les RAR et modulent leur activité transcriptionnelle. Cependant, l’ensemble des protéines phosphorylées en réponse à l’AR de même que les conséquences des dérégulations du « kinome » sur les effets l’AR et le fonctionnement des RAR demeurent mal connus. J’ai comparé les effets de l’AR sur le phosphoprotéome de deux lignées de cellules de cancer du sein : MCF7, qui est sensible à l’AR, et BT474, qui surexprime le récepteur a activité tyrosine kinase erbB-2 et est résistante à l’AR. De nombreuses différences ont été observées avec des répercussions sur l’expression des gènes de même que sur la phosphorylation, le recrutement aux promoteurs des gènes cibles et la dégradation de RAR alpha par le protéasome. J’ai aussi montré que la dégradation de RAR alpha met en jeu TRIM24 qui contrôle sa déubiquitination.Retinoic acid (RA) acts by binding to specific nuclear receptors (RARs), which are ligand-dependant transcription factors. RA also has non-genomic effects and activates kinase cascades that target RARs and modulate their transcriptional activity. However, the proteins that are phosphorylated in response to RA remain to be identified. The consequences of dysregulations of the "kinome" on the non-genomic effects of RA and on RAR function also require further investigation. I compared the effect of RA on the phosphoproteome of two breast cancer cell lines: MCF7, which is RA-sensitive, and BT474, a RA-resistant cell line that overexpresses the receptor tyrosine kinase erbB-2. Multiple differences were observed with consequences on gene expression as well as on phosphorylation, recruitment on target genes promoters and RARalpha degradation by the proteasome. In the context or RARalpha degradation, I showed the involvement of TRIM24 which controls RARα deubiquitination

    Dérégulation du phosphoprotéome dans les cancers : conséquences sur l'activité transcriptionnelle et la dégradation des récepteurs de l'acide rétinoïque (RAR)

    Get PDF
    Retinoic acid (RA) acts by binding to specific nuclear receptors (RARs), which are ligand-dependant transcription factors. RA also has non-genomic effects and activates kinase cascades that target RARs and modulate their transcriptional activity. However, the proteins that are phosphorylated in response to RA remain to be identified. The consequences of dysregulations of the "kinome" on the non-genomic effects of RA and on RAR function also require further investigation. I compared the effect of RA on the phosphoproteome of two breast cancer cell lines: MCF7, which is RA-sensitive, and BT474, a RA-resistant cell line that overexpresses the receptor tyrosine kinase erbB-2. Multiple differences were observed with consequences on gene expression as well as on phosphorylation, recruitment on target genes promoters and RARalpha degradation by the proteasome. In the context or RARalpha degradation, I showed the involvement of TRIM24 which controls RARα deubiquitination.L’acide rétinoïque (AR) agit via des récepteurs nucléaires (RAR) qui sont des facteurs de transcription inductibles par le ligand. Il active aussi des cascades de kinases qui ciblent les RAR et modulent leur activité transcriptionnelle. Cependant, l’ensemble des protéines phosphorylées en réponse à l’AR de même que les conséquences des dérégulations du « kinome » sur les effets l’AR et le fonctionnement des RAR demeurent mal connus. J’ai comparé les effets de l’AR sur le phosphoprotéome de deux lignées de cellules de cancer du sein : MCF7, qui est sensible à l’AR, et BT474, qui surexprime le récepteur a activité tyrosine kinase erbB-2 et est résistante à l’AR. De nombreuses différences ont été observées avec des répercussions sur l’expression des gènes de même que sur la phosphorylation, le recrutement aux promoteurs des gènes cibles et la dégradation de RAR alpha par le protéasome. J’ai aussi montré que la dégradation de RAR alpha met en jeu TRIM24 qui contrôle sa déubiquitination

    TRIM

    No full text
    The nuclear retinoic acid (RA) receptors (RARalpha, beta and gamma) are ligand-dependent regulators of transcription. Upon activation by RA, they are recruited at the promoters of target genes together with several coregulators. Then, they are degraded by the ubiquitin proteasome system. Here, we report that the degradation of the RARalpha subtype involves ubiquitination and the tripartite motif protein TRIM24, which was originally identified as a ligand-dependent corepressor of RARalpha. We show that in response to RA, TRIM24 serves as an adapter linking RARalpha to the proteasome for its degradation. In addition, TRIM24 and the proteasome are recruited with RARalpha to the promoters of target genes and thus are inherently linked to RARalpha transcriptional activity

    TRIM24 mediates the interaction of the retinoic acid receptor alpha with the proteasome

    No full text
    The nuclear retinoic acid (RA) receptors (RARalpha, beta and gamma) are ligand-dependent regulators of transcription. Upon activation by RA, they are recruited at the promoters of target genes together with several coregulators. Then, they are degraded by the ubiquitin proteasome system. Here, we report that the degradation of the RARalpha subtype involves ubiquitination and the tripartite motif protein TRIM24, which was originally identified as a ligand-dependent corepressor of RARalpha. We show that in response to RA, TRIM24 serves as an adapter linking RARalpha to the proteasome for its degradation. In addition, TRIM24 and the proteasome are recruited with RARalpha to the promoters of target genes and thus are inherently linked to RARalpha transcriptional activity

    Phosphoproteome and Transcriptome of RA-Responsive and RA-Resistant Breast Cancer Cell Lines.

    No full text
    Retinoic acid (RA), the main active vitamin A metabolite, controls multiple biological processes such as cell proliferation and differentiation through genomic programs and kinase cascades activation. Due to these properties, RA has proven anti-cancer capacity. Several breast cancer cells respond to the antiproliferative effects of RA, while others are RA-resistant. However, the overall signaling and transcriptional pathways that are altered in such cells have not been elucidated. Here, in a large-scale analysis of the phosphoproteins and in a genome-wide analysis of the RA-regulated genes, we compared two human breast cancer cell lines, a RA-responsive one, the MCF7 cell line, and a RA-resistant one, the BT474 cell line, which depicts several alterations of the "kinome". Using high-resolution nano-LC-LTQ-Orbitrap mass spectrometry associated to phosphopeptide enrichment, we found that several proteins involved in signaling and in transcription, are differentially phosphorylated before and after RA addition. The paradigm of these proteins is the RA receptor α (RARα), which was phosphorylated in MCF7 cells but not in BT474 cells after RA addition. The panel of the RA-regulated genes was also different. Overall our results indicate that RA resistance might correlate with the deregulation of the phosphoproteome with consequences on gene expression

    The Educational Terrain of Preparing Registered Nurses to Prescribe: An Environmental Scan.

    No full text
    Expanded nursing roles are being explored in Canada as a means to better support the health of the population, enable access to quality care and contribute to the sustainability of the healthcare system. As Canada embarks on a process of developing and implementing registered nurse (RN) prescribing roles, gathering evidence from jurisdictions with established nurse prescribing is helpful to inform policy development. Of particular interest is literature from the UK, with more than 20 years of experience with nurse prescribing, which identifies the importance of completing graduate pharmacological education and building on existing clinical knowledge and experience. Similar models of RN prescribing education have been adopted in New Zealand and Ireland. Within Canada, the RN prescribing role is still in its infancy, and there is some variation among provinces in the approach to prescribing practices and in RN prescribing education. This paper describes the results of an environmental scan that sought to explore the educational practices of national and international jurisdictions through published and grey literature sources. Findings from this environmental scan will support nurse leaders as they develop RN prescribing regulation and education in Canada and will highlight important areas for further knowledge development. [Abstract copyright: Copyright © 2020 Longwoods Publishing.
    corecore