61 research outputs found

    Addressing the disparities in dementia risk, early detection and care in Latino populations: Highlights from the second Latinos & Alzheimer\u27s Symposium

    Get PDF
    The Alzheimer\u27s Association hosted the second Latinos & Alzheimer\u27s Symposium in May 2021. Due to the COVID-19 pandemic, the meeting was held online over 2 days, with virtual presentations, discussions, mentoring sessions, and posters. The Latino population in the United States is projected to have the steepest increase in Alzheimer\u27s disease (AD) in the next 40 years, compared to other ethnic groups. Latinos have increased risk for AD and other dementias, limited access to quality care, and are severely underrepresented in AD and dementia research and clinical trials. The symposium highlighted developments in AD research with Latino populations, including advances in AD biomarkers, and novel cognitive assessments for Spanish-speaking populations, as well as the need to effectively recruit and retain Latinos in clinical research, and how best to deliver health-care services and to aid caregivers of Latinos living with AD

    Replication of EPHA1 and CD33 associations with late-onset Alzheimer's disease: a multi-centre case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A recently published genome-wide association study (GWAS) of late-onset Alzheimer's disease (LOAD) revealed genome-wide significant association of variants in or near <it>MS4A4A, CD2AP, EPHA1 </it>and <it>CD33</it>. Meta-analyses of this and a previously published GWAS revealed significant association at <it>ABCA7 </it>and <it>MS4A</it>, independent evidence for association of <it>CD2AP, CD33 </it>and <it>EPHA1 </it>and an opposing yet significant association of a variant near <it>ARID5B</it>. In this study, we genotyped five variants (in or near <it>CD2AP, EPHA1, ARID5B</it>, and <it>CD33</it>) in a large (2,634 LOAD, 4,201 controls), independent dataset comprising six case-control series from the USA and Europe. We performed meta-analyses of the association of these variants with LOAD and tested for association using logistic regression adjusted by age-at-diagnosis, gender, and <it>APOE ε4 </it>dosage.</p> <p>Results</p> <p>We found no significant evidence of series heterogeneity. Associations with LOAD were successfully replicated for <it>EPHA1 </it>(rs11767557; OR = 0.87, p = 5 × 10<sup>-4</sup>) and <it>CD33 </it>(rs3865444; OR = 0.92, p = 0.049), with odds ratios comparable to those previously reported. Although the two <it>ARID5B </it>variants (rs2588969 and rs494288) showed significant association with LOAD in meta-analysis of our dataset (p = 0.046 and 0.008, respectively), the associations did not survive adjustment for covariates (p = 0.30 and 0.11, respectively). We had insufficient evidence in our data to support the association of the <it>CD2AP </it>variant (rs9349407, p = 0.56).</p> <p>Conclusions</p> <p>Our data overwhelmingly support the association of <it>EPHA1 </it>and <it>CD33 </it>variants with LOAD risk: addition of our data to the results previously reported (total n > 42,000) increased the strength of evidence for these variants, providing impressive p-values of 2.1 × 10<sup>-15 </sup>(<it>EPHA1</it>) and 1.8 × 10<sup>-13 </sup>(<it>CD33</it>).</p

    Addressing the disparities in dementia risk, early detection and care in Latino populations: Highlights from the Second Latinos and Alzheimer's Symposium

    Full text link
    The Alzheimer's Association hosted the second Latinos & Alzheimer's Symposium in May 2021. Due to the COVID-19 pandemic, the meeting was held online over 2 days, with virtual presentations, discussions, mentoring sessions, and posters. The Latino population in the United States is projected to have the steepest increase in Alzheimer's disease (AD) in the next 40 years, compared to other ethnic groups. Latinos have increased risk for AD and other dementias, limited access to quality care, and are severely underrepresented in AD and dementia research and clinical trials. The symposium highlighted developments in AD research with Latino populations, including advances in AD biomarkers, and novel cognitive assessments for Spanish-speaking populations, as well as the need to effectively recruit and retain Latinos in clinical research, and how best to deliver health-care services and to aid caregivers of Latinos living with AD

    LRRTM3 Interacts with APP and BACE1 and Has Variants Associating with Late-Onset Alzheimer's Disease (LOAD)

    Get PDF
    Leucine rich repeat transmembrane protein 3 (LRRTM3) is member of a synaptic protein family. LRRTM3 is a nested gene within α-T catenin (CTNNA3) and resides at the linkage peak for late-onset Alzheimer’s disease (LOAD) risk and plasma amyloid β (Aβ) levels. In-vitro knock-down of LRRTM3 was previously shown to decrease secreted Aβ, although the mechanism of this is unclear. In SH-SY5Y cells overexpressing APP and transiently transfected with LRRTM3 alone or with BACE1, we showed that LRRTM3 co-localizes with both APP and BACE1 in early endosomes, where BACE1 processing of APP occurs. Additionally, LRRTM3 co-localizes with APP in primary neuronal cultures from Tg2576 mice transduced with LRRTM3-expressing adeno-associated virus. Moreover, LRRTM3 co-immunoprecipitates with both endogenous APP and overexpressed BACE1, in HEK293T cells transfected with LRRTM3. SH-SY5Y cells with knock-down of LRRTM3 had lower BACE1 and higher CTNNA3 mRNA levels, but no change in APP. Brain mRNA levels of LRRTM3 showed significant correlations with BACE1, CTNNA3 and APP in ∼400 humans, but not in LRRTM3 knock-out mice. Finally, we assessed 69 single nucleotide polymorphisms (SNPs) within and flanking LRRTM3 in 1,567 LOADs and 2,082 controls and identified 8 SNPs within a linkage disequilibrium block encompassing 5′UTR-Intron 1 of LRRTM3 that formed multilocus genotypes (MLG) with suggestive global association with LOAD risk (p = 0.06), and significant individual MLGs. These 8 SNPs were genotyped in an independent series (1,258 LOADs and 718 controls) and had significant global and individual MLG associations in the combined dataset (p = 0.02–0.05). Collectively, these results suggest that protein interactions between LRRTM3, APP and BACE1, as well as complex associations between mRNA levels of LRRTM3, CTNNA3, APP and BACE1 in humans might influence APP metabolism and ultimately risk of AD.© 2013 Lincoln et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity

    Get PDF
    The genetic variant rs72824905-G (minor allele) in the PLCG2 gene was previously associated with a reduced Alzheimer’s disease risk (AD). The role of PLCG2 in immune system signaling suggests it may also protect against other neurodegenerative diseases and possibly associates with longevity. We studied the effect of the rs72824905-G on seven neurodegenerative diseases and longevity, using 53,627 patients, 3,516 long-lived individuals and 149,290 study-matched controls. We replicated the association of rs72824905-G with reduced AD risk and we found an association with reduced risk of dementia with Lewy bodies (DLB) and frontotemporal dementia (FTD). We did not find evidence for an effect on Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS) risks, despite adequate sample sizes. Conversely, the rs72824905-G allele was associated with increased likelihood of longevity. By-proxy analyses in the UK Biobank supported the associations with both dementia and longevity. Concluding, rs72824905-G has a protective effect against multiple neurodegenerative diseases indicating shared aspects of disease etiology. Our findings merit studying the PLCγ2 pathway as drug-target.Fil:  van der Lee, Sven J.. Vrije Universiteit Amsterdam; Países BajosFil: Conway, Olivia J.. Mayo Clinic Cancer Center; Estados UnidosFil: Jansen, Iris. Vrije Universiteit Amsterdam; Países BajosFil: Carrasquillo, Minerva M.. Mayo Clinic Cancer Center; Estados UnidosFil: Kleineidam, Luca. Universitat Bonn; Alemania. German Center for Neurodegenerative Diseases; Alemania. University Hospital Cologne; AlemaniaFil: van den Akker, Erik. Leiden University. Leiden University Medical Center; Países Bajos. Delft University of Technology; Países BajosFil: Hernández, Isabel. Universitat Internacional de Catalunya; España. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas ; EspañaFil: van Eijk, Kristel R.. University of Utrecht; Países BajosFil: Stringa, Najada. Vrije Universiteit Amsterdam; Países BajosFil: Chen, Jason A.. University of California at Los Angeles; Estados UnidosFil: Zettergren, Anna. University of Gothenburg; SueciaFil: Andlauer, Till F. M.. Max Planck Institute of Psychiatry; Alemania. Universitat Technical Zu Munich; Alemania. German Competence Network Multiple Sclerosis; AlemaniaFil: Diez Fairen, Monica. University Hospital Mutua de Terrassa; España. Fundacio per la Recerca Biomedica I Social Mutua Terrassa; EspañaFil: Simon Sanchez, Javier. Deutsches Zentrum für Neurodegenerative Erkrankungen; Alemania. Eberhard Karls Universität Tübingen; AlemaniaFil: Lleó, Alberto. Universitat Autònoma de Barcelona; España. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas ; EspañaFil: Zetterberg, Henrik. Sahlgrenska University Hospital; Suecia. University of Gothenburg; Suecia. University College London; Estados UnidosFil: Nygaard, Marianne. University of Southern Denmark; DinamarcaFil: Blauwendraat, Cornelis. National Institute of Neurological Disorders and Stroke; Estados UnidosFil: Savage, Jeanne E.. Vrije Universiteit Amsterdam; Países BajosFil: Mengel From, Jonas. University of Southern Denmark; DinamarcaFil: Moreno Grau, Sonia. Universitat Internacional de Catalunya; EspañaFil: Wagner, Michael. Universitat Bonn; Alemania. Deutsches Zentrum für Neurodegenerative Erkrankungen; AlemaniaFil: Fortea, Juan. Universitat Autònoma de Barcelona; España. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas ; EspañaFil: Keogh, Michael J.. University of Newcastle; Reino Unido. University of Cambridge; Reino UnidoFil: Blennow, Kaj. Sahlgrenska University Hospital; Suecia. University of Gothenburg; SueciaFil: Skoog, Ingmar. University of Gothenburg; SueciaFil: Friese, Manuel A.. German Competence Network Multiple Sclerosis; Alemania. Universitätsklinikum Hamburg‐Eppendorf; AlemaniaFil: Pletnikova, Olga. University Johns Hopkins; Estados UnidosFil: Zulaica, Miren. Centro de Investigacion Biomedica en Red en Enfermedades Neurodegenerativas ; España. Instituto Biodonostia; EspañaFil: Dalmasso, Maria Carolina. University Hospital Cologne; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease

    Get PDF
    We sought to identify new susceptibility loci for Alzheimer's disease through a staged association study (GERAD+) and by testing suggestive loci reported by the Alzheimer's Disease Genetic Consortium (ADGC) in a companion paper. We undertook a combined analysis of four genome-wide association datasets (stage 1) and identified ten newly associated variants with P ≤ 1 × 10−5. We tested these variants for association in an independent sample (stage 2). Three SNPs at two loci replicated and showed evidence for association in a further sample (stage 3). Meta-analyses of all data provided compelling evidence that ABCA7 (rs3764650, meta P = 4.5 × 10−17; including ADGC data, meta P = 5.0 × 10−21) and the MS4A gene cluster (rs610932, meta P = 1.8 × 10−14; including ADGC data, meta P = 1.2 × 10−16) are new Alzheimer's disease susceptibility loci. We also found independent evidence for association for three loci reported by the ADGC, which, when combined, showed genome-wide significance: CD2AP (GERAD+, P = 8.0 × 10−4; including ADGC data, meta P = 8.6 × 10−9), CD33 (GERAD+, P = 2.2 × 10−4; including ADGC data, meta P = 1.6 × 10−9) and EPHA1 (GERAD+, P = 3.4 × 10−4; including ADGC data, meta P = 6.0 × 10−10)

    Convergent genetic and expression data implicate immunity in Alzheimer's disease

    Get PDF
    Background Late–onset Alzheimer's disease (AD) is heritable with 20 genes showing genome wide association in the International Genomics of Alzheimer's Project (IGAP). To identify the biology underlying the disease we extended these genetic data in a pathway analysis. Methods The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated functional pathways and correlated gene expression networks in human brain. Results ALIGATOR identified an excess of curated biological pathways showing enrichment of association. Enriched areas of biology included the immune response (p = 3.27×10-12 after multiple testing correction for pathways), regulation of endocytosis (p = 1.31×10-11), cholesterol transport (p = 2.96 × 10-9) and proteasome-ubiquitin activity (p = 1.34×10-6). Correlated gene expression analysis identified four significant network modules, all related to the immune response (corrected p 0.002 – 0.05). Conclusions The immune response, regulation of endocytosis, cholesterol transport and protein ubiquitination represent prime targets for AD therapeutics

    Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer's disease

    Get PDF
    We identified rare coding variants associated with Alzheimer’s disease (AD) in a 3-stage case-control study of 85,133 subjects. In stage 1, 34,174 samples were genotyped using a whole-exome microarray. In stage 2, we tested associated variants (P<1×10-4) in 35,962 independent samples using de novo genotyping and imputed genotypes. In stage 3, an additional 14,997 samples were used to test the most significant stage 2 associations (P<5×10-8) using imputed genotypes. We observed 3 novel genome-wide significant (GWS) AD associated non-synonymous variants; a protective variant in PLCG2 (rs72824905/p.P522R, P=5.38×10-10, OR=0.68, MAFcases=0.0059, MAFcontrols=0.0093), a risk variant in ABI3 (rs616338/p.S209F, P=4.56×10-10, OR=1.43, MAFcases=0.011, MAFcontrols=0.008), and a novel GWS variant in TREM2 (rs143332484/p.R62H, P=1.55×10-14, OR=1.67, MAFcases=0.0143, MAFcontrols=0.0089), a known AD susceptibility gene. These protein-coding changes are in genes highly expressed in microglia and highlight an immune-related protein-protein interaction network enriched for previously identified AD risk genes. These genetic findings provide additional evidence that the microglia-mediated innate immune response contributes directly to AD development

    Correction to: A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer's disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity.

    Get PDF
    The IPDGC (The International Parkinson Disease Genomics Consortium) and EADB (Alzheimer Disease European DNA biobank) are listed correctly as an author to the article, however, they were incorrectly listed more than once
    corecore