79 research outputs found

    Prospects of optical biosensors for emerging label-free RNA analysis

    Get PDF
    RNA is critical in countless cellular processes, and researchers are constantly discovering new types and attributing them different roles. Consequently, a growing interest in efficient RNA analysis has arisen. However, RNA detection is complicated and generally requires the use of labels. Major efforts are being devoted to conceive new approaches for RNA analysis with no need of markers. Optical biosensing is a highly sensitive approach that circumvents many of conventional methods' limitations. Lately, label-free applications with optical biosensors have been developed for short as well as for long RNAs. The low limits of detection at the pM level enabled by optical biosensors, together with a fast analysis, their reusability and the label-free scheme of operation, clearly highlight them among the most promising next-generation RNA screening platforms. This review covers the most relevant optical biosensor platforms and their potential for enabling sensitive and label-free RNA analysis

    Label-free detection of RNA by triplex affinity capture using parallel tail-clamps

    Get PDF
    Trabajo presentado a la Conferencia "BNC-b Research Meeting" celebrada en Barcelona el 14 de julio de 2011.-- et al.Peer reviewe

    Prospects of optical biosensors for emerging label-free RNA analysis

    Get PDF
    RNA is critical in countless cellular processes, and researchers are constantly discovering new types and attributing them different roles. Consequently, a growing interest in efficient RNA analysis has arisen. However, RNA detection is complicated and generally requires the use of labels. Major efforts are being devoted to conceive new approaches for RNA analysis with no need of markers. Optical biosensing is a highly sensitive approach that circumvents many of conventional methods' limitations. Lately, label-free applications with optical biosensors have been developed for short as well as for long RNAs. The low limits of detection at the pM level enabled by optical biosensors, together with a fast analysis, their reusability and the label-free scheme of operation, clearly highlight them among the most promising next-generation RNA screening platforms. This review covers the most relevant optical biosensor platforms and their potential for enabling sensitive and label-free RNA analysis

    Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing

    Get PDF
    Exosomes show promise as non-invasive biomarkers for cancers, but their effective capture and specific detection is a significant challenge. Herein, we report a multiplexed microfluidic device for highly specific capture and detection of multiple exosome targets using a tuneable alternating current electrohydrodynamic (ac-EHD) methodology - referred to as nanoshearing. In our system, electrical body forces generated by ac-EHD act within nanometers of an electrode surface (i.e., within the electrical layer) to generate nanoscaled fluid flow which enhances the specificity of capture and also reduce nonspecific adsorption of weakly bound molecules from the electrode surface. This approach demonstrates the analysis of exosomes derived from cells expressing human epidermal growth factor receptor 2 (HER2) and prostate specific antigen (PSA), and exhibits a 5-fold detection enhancement compared to hydrodynamic flow based assays. The device was also sensitive enough to detect approximately 2750 exosomes/µL (n = 3) and also capable of specifically isolating exosomes from breast cancer patient samples. We believe this approach can potentially find its relevance as a simple and rapid quantification tool to analyze exosome targets in biological applications

    Molecular inversion probe-based SPR biosensing for specific, label-free and real-time detection of regional DNA methylation

    Get PDF
    DNA methylation has the potential to be a clinically important biomarker in cancer. This communication reports a real-time and label-free biosensing strategy for DNA methylation detection in the cancer cell line. This has been achieved by using surface plasmon resonance biosensing combined with the highly specific molecular inversion probe based amplification method, which requires only 50 ng of bisulfite treated genomic DNA

    Detection of regional DNA methylation using DNA-graphene affinity interactions

    Get PDF
    We report a new multiplexed strategy for the electrochemical detection of regional DNA methylation across multiple regions. Using the sequence dependent affinity of bisulfite treated DNA towards gold surfaces, the method integrates the high sensitivity of a micro-fabricated multiplex device comprising a microarray of gold electrodes, with the powerful multiplexing capability of multiplex-PCR. The synergy of this combination enables the monitoring of the methylation changes across several genomic regions simultaneously from as low as 500 pg μl(-1) of DNA with no sequencing requirement

    eMethylsorb: rapid quantification of DNA methylation in cancer cells on screen-printed gold electrodes

    Get PDF
    Simple, sensitive and inexpensive regional DNA methylation detection methodologies are imperative for routine patient diagnostics. Herein, we describe eMethylsorb, an electrochemical assay for quantitative detection of regional DNA methylation on a single-use and cost-effective screen-printed gold electrode (SPE-Au) platform. The eMethylsorb approach is based on the inherent differential adsorption affinity of DNA bases to gold (i.e. adenine > cytosine ≥ guanine > thymine). Through bisulfite modification and asymmetric PCR of DNA, methylated and unmethylated DNA in the sample becomes guanine-enriched and adenine-enriched respectively. Under optimized conditions, adenine-enriched unmethylated DNA (higher affinity to gold) adsorbs more onto the SPE-Au surface than methylated DNA. Higher DNA adsorption causes stronger coulombic repulsion and hinders reduction of ferricyanide [Fe(CN)]ions on the SPE-Au surface to give a lower electrochemical response. Hence, the response level is directly proportional to the methylation level in the sample. The applicability of this methodology was tested by detecting the regional methylation status in a cluster of eight CpG sites within the engrailed (EN1) gene promoter of the MCF7 breast cancer cell line. A 10% methylation level sensitivity with good reproducibility (RSD = 5.8%, n = 3) was achieved rapidly in 10 min. Furthermore, eMethylsorb also has advantages over current methylation assays such as being inexpensive, rapid and does not require any electrode surface modification. We thus believe that the eMethylsorb assay could potentially be a rapid and accurate diagnostic assay for point-of-care DNA methylation analysis

    Sensitive and label-free biosensing of RNA with predicted secondary structures by a triplex affinity capture method

    Get PDF
    A novel biosensing approach for the label-free detection of nucleic acid sequences of short and large lengths has been implemented, with special emphasis on targeting RNA sequences with secondary structures. The approach is based on selecting 8-aminoadenine-modified parallel-stranded DNA tail-clamps as affinity bioreceptors. These receptors have the ability of creating a stable triplex-stranded helix at neutral pH upon hybridization with the nucleic acid target. A surface plasmon resonance biosensor has been used for the detection. With this strategy, we have detected short DNA sequences (32-mer) and purified RNA (103-mer) at the femtomol level in a few minutes in an easy and level-free way. This approach is particularly suitable for the detection of RNA molecules with predicted secondary structures, reaching a limit of detection of 50 fmol without any label or amplification steps. Our methodology has shown a marked enhancement for the detection (18% for short DNA and 54% for RNA), when compared with the conventional duplex approach, highlighting the large difficulty of the duplex approach to detect nucleic acid sequences, especially those exhibiting stable secondary structures. We believe that our strategy could be of great interest to the RNA field

    Automatic Filtering and Substantiation of Drug Safety Signals

    Get PDF
    Drug safety issues pose serious health threats to the population and constitute a major cause of mortality worldwide. Due to the prominent implications to both public health and the pharmaceutical industry, it is of great importance to unravel the molecular mechanisms by which an adverse drug reaction can be potentially elicited. These mechanisms can be investigated by placing the pharmaco-epidemiologically detected adverse drug reaction in an information-rich context and by exploiting all currently available biomedical knowledge to substantiate it. We present a computational framework for the biological annotation of potential adverse drug reactions. First, the proposed framework investigates previous evidences on the drug-event association in the context of biomedical literature (signal filtering). Then, it seeks to provide a biological explanation (signal substantiation) by exploring mechanistic connections that might explain why a drug produces a specific adverse reaction. The mechanistic connections include the activity of the drug, related compounds and drug metabolites on protein targets, the association of protein targets to clinical events, and the annotation of proteins (both protein targets and proteins associated with clinical events) to biological pathways. Hence, the workflows for signal filtering and substantiation integrate modules for literature and database mining, in silico drug-target profiling, and analyses based on gene-disease networks and biological pathways. Application examples of these workflows carried out on selected cases of drug safety signals are discussed. The methodology and workflows presented offer a novel approach to explore the molecular mechanisms underlying adverse drug reactions

    Nanomechanical characterization of the surface stress of gold surfaces during the formation of DNA self-assembled monolayers

    Get PDF
    Póster presentado al 1st Workshop on Nanomechanical Sensors celebrado en Madrid (España) en 2004.Peer reviewe
    corecore