126 research outputs found

    Experimental validation of footprint models for eddy covariance CO2 flux measurements above grassland by means of natural and artificial tracers

    Get PDF
    Footprint models, which simulate source area for scalar fluxes, are fundamental tools for a correct interpretation of micromoeteorological flux measurements and ecosystem exchange inferred from such data. Over the last two decades models of varying complexity have been developed, but all of them suffer from a significant lack of experimental validation. In this study two different experimental tests have been conducted with the aim of offering validation: a manipulation of the vegetation cover and an artificial tracer emission. In the first case the extension of the flux source has been changed progressively by successive cuts of vegetation, while in the second case by varying the distance of a tracer emission line respect to the measurement point. Results have been used to validate two analytical and a numerical footprint models. The experimental data show a good agreement with footprint models and indicate a limited extension of the flux source area, with approximately 75% of the sources confined within a range of 10-20 times the effective measurement height, i.e. the measurement height above the zero plane displacement. Another interesting result was the strong dependence on the surface roughness of both experimental estimates and numerical simulations of footprint. The effect of surface roughness on experimental results and models outputs was comparable to the effect of atmospheric stability. This indicates that surface roughness and turbulence conditions may play a significant role in source area location, in particular above inhomogeneous surfaces with change in roughness, as in the case of the manipulation experiment. Consequently a careful site specific quantification of these parameters seems to be fundamental to obtain realistic footprint estimates and significantly improve eddy covariance flux interpretation at complex sites.Peer reviewe

    The comparison between two age estimation methods based on human teeth

    Get PDF
    ABSTRACT From among age estimation procedures we chose two for comparison. One of them is the standard method based on root dentin transparency; the other one is based on coronal pulp cavity heigth. The material consisted of X-ray photographs and longitudinally sectioned teeth of 276 individuals (174 males and 102 females) of known age. The comparison shows that the poorly known TCI method is at least as precise as the most widely applied and acknowledged procedure based on longitudinal sections of teeth

    Low-dose benzene exposure monitoring of oil refinery workers: inhalation and biomarkers

    Get PDF
    Airborne benzene in workplaces has progressively decreased due to preventive actions and the redesigning of facility processes. Professionals who assess occupational exposure should select techniques to detect benzene levels comparable to ambient air exposure. Thus, sensitive biomarkers are needed to discriminate the effects of confounding factors, such as smoking or sorbic acid (SA). In order to identify sensitive biomarkers and to study their correlation with confounding factors, 23 oil refinery workers were enrolled in the study; their airborne benzene exposures and biomarkers were monitored. Urinary benzene (U-B), t,t-muconic acid (t,t-MA), and S-phenylmercapturic acid (SPMA) were quantified. Urinary cotinine (U-C) and t,t-sorbic acid (t,t-SA) were evaluated to flag smoking and SA intake, respectively. The benzene measured in personal inhalation sampling ranged from 0.6 to 83.5 (median 1.7) µg/m3. The concentration range of the biomarkers, U-B, t,t-MA, and SPMA, were 18–4893 ng/m3, <10–79.4 µg/g creatinine, and <0.5–3.96 µg/g creatinine, respectively. Pearson tests were carried out; the best correlations were between airborne benzene and U-B (µg/L r = 0.820, p < 0.001) and between benzene and SPMA (g/L r = 0.812, p < 0.001), followed by benzene and t,t-MA (mg/L r = 0.465, p = 0.039). From our study, U-B and SPMA result to be the most reliable biomarkers to assess the internal number of low doses of benzene exposure, thanks to their specificity and sensitivity

    The Genetic Origin of Daunians and the Pan-Mediterranean Southern Italian Iron Age Context.

    Get PDF
    The geographical location and shape of Apulia, a narrow land stretching out in the sea at the South of Italy, made this region a Mediterranean crossroads connecting Western Europe and the Balkans. Such movements culminated at the beginning of the Iron Age with the Iapygian civilization which consisted of three cultures: Peucetians, Messapians, and Daunians. Among them, the Daunians left a peculiar cultural heritage, with one-of-a-kind stelae and pottery, but, despite the extensive archaeological literature, their origin has been lost to time. In order to shed light on this and to provide a genetic picture of Iron Age Southern Italy, we collected and sequenced human remains from three archaeological sites geographically located in Northern Apulia (the area historically inhabited by Daunians) and radiocarbon dated between 1157 and 275 calBCE. We find that Iron Age Apulian samples are still distant from the genetic variability of modern-day Apulians, they show a degree of genetic heterogeneity comparable with the cosmopolitan Republican and Imperial Roman civilization, even though a few kilometers and centuries separate them, and they are well inserted into the Iron Age Pan-Mediterranean genetic landscape. Our study provides for the first time a window on the genetic make-up of pre-Roman Apulia, whose increasing connectivity within the Mediterranean landscape, would have contributed to laying the foundation for modern genetic variability. In this light, the genetic profile of Daunians may be compatible with an at least partial autochthonous origin, with plausible contributions from the Balkan peninsula

    Radiation measurements at ICOS ecosystem stations

    Get PDF
    Solar radiation is a key driver of energy and carbon fluxes in natural ecosystems. Radiation measurements are essential for interpreting ecosystem scale greenhouse gases and energy fluxes as well as many other observations performed at ecosystem stations of the Integrated Carbon Observation System (ICOS). We describe and explain the relevance of the radiation variables that arc monitored continuously at ICOS ecosystems stations and define recommendations to perform these measurements with consistent and comparable accuracy. The measurement methodology and instruments are described including detailed technical specifications. Guidelines for instrumental set up as well as for operation, maintenance and data collection arc defined considering both ICOS scientific objectives and practical operational constraints. For measurements of short-wave (solar) and long wave (infrared) radiation components, requirements for the ICOS network are based on available well-defined state-of-the art standards (World Meteorological Organization, International Organization for Standardization). For photosynthetically active radiation measurements, some basic instrumental requirements are based on the performance of commercially available sensors. Since site specific conditions and practical constraints at individual ICOS ecosystem stations may hamper the applicability of standard requirements, we recommend that ICOS develops mid-tern coordinated actions to assess the effective level of uncertainties in radiation measurements at the network scale.Peer reviewe

    The logic of identity and copy for computational artefacts

    Get PDF
    Defining identity for entities is a longstanding logical problem in philosophy, and it has resurfaced in current investigations within the philosophy of technology. The problem has not yet been explored for the philosophy of information, and of Computer Science in particular. This paper provides a logical analysis of identity and copy for computational artefacts. Identity is here understood as the relation holding between an instance of a computational artefact and itself. By contrast, the copy relation holds between two distinct computational artefacts. We distinguish among exact, inexact and approximate copies. We use process algebra to provide suitable formal definitions of these relations, using in particular the notion of bisimulation to define identity and exact copies, and simulation for inexact and approximate copies. Equivalence is unproblematic for identical computational artefacts at each individual time and for inexact copies; we will examine to which extent the formal constraints on identity criteria discussed in the literature are satisfied by our approach. As for inexact and approximate copy, they are intended as a weakening of the identity relation in that equivalence and other constraints on identity are violated. The proposed approach also suggests a computable treatment of identity and copy checking

    Accuracy of Immunodiagnostic Tests for Active Tuberculosis Using Single and Combined Results: A Multicenter TBNET-Study

    Get PDF
    The clinical application of IFN-gamma release assays (IGRAs) has recently improved the diagnosis of latent tuberculosis infection. In a multicenter study of the Tuberculosis Network European Trialsgroup (TBNET) we aimed to ascertain in routine clinical practice the accuracy of a novel assay using selected peptides encoded in the mycobacterial genomic region of difference (RD) 1 for the diagnosis of active tuberculosis in comparison with tuberculin skin test (TST), QuantiFERON-TB GOLD In-Tube (Cellestis Ltd., Carnegie, Australia) and T-SPOT.TB (Oxfordimmunotec, Abingdon, UK)

    Antimicrobial Prophylaxis in Neonates and Children Undergoing Dental, Maxillo-Facial or Ear-Nose-Throat (ENT) Surgery: A RAND/UCLA Appropriateness Method Consensus Study

    Get PDF
    Surgical site infections (SSIs) represent a potential complication in surgical procedures, mainly because clean/contaminated surgery involves organs that are normally colonized by bacteria. Dental, maxillo-facial and ear-nose-throat (ENT) surgeries are among those that carry a risk of SSIs because the mouth and the first respiratory tracts are normally colonized by a bacterial flora. The aim of this consensus document was to provide clinicians with recommendations on surgical antimicrobial prophylaxis in neonates (<28 days of chronological age) and pediatric patients (within the age range of 29 days-18 years) undergoing dental, maxillo-facial or ENT surgical procedures. These included: (1) dental surgery; (2) maxilla-facial surgery following trauma with fracture; (3) temporo-mandibular surgery; (4) cleft palate and cleft lip repair; (5) ear surgery; (6) endoscopic paranasal cavity surgery and septoplasty; (7) clean head and neck surgery; (8) clean/contaminated head and neck surgery and (9) tonsillectomy and adenoidectomy. Due to the lack of pediatric data for the majority of dental, maxillo-facial and ENT surgeries and the fact that the recommendations for adults are currently used, there is a need for ad hoc studies to be rapidly planned for the most deficient areas. This seems even more urgent for interventions such as those involving the first airways since the different composition of the respiratory microbiota in children compared to adults implies the possibility that surgical antibiotic prophylaxis schemes that are ideal for adults may not be equally effective in children
    • …
    corecore