550 research outputs found

    Pollen ultrastructure in different vine cultivars with low productivity

    Get PDF
    The morphology of pollen grains of different vine cultivars has been examined by transmission and scanning electron microscopy to see if a correlation could be found between low productivity and the presence of acolporated pollen. Actually, it was found that in the examined cultivars with low productivity the pollen is round, deprived of furrows and germinative pores, and surrounded by a continuous layer of bacula and tegmen. However, high productivity is not always correlated with the presence of colporated pollen, as is the case with the flowers of the feathers of Picolit.Die Feinstruktur der Pollenkörner bei verschiedenen ertragsschwachen RebensortenUm einen möglichen Zusammenhang zwischen niedriger Ertragsleistung und dem Vorkommen acolporater, d. h. ungefurchter und porenloser Pollenkörner aufzudecken, wurde bei einer Reihe von Rebensorten mit Hilfe der Raster- und Transmissionselektronenmikroskopie die Morphologie der Pollenkörner untersucht. Es konnte tatsächlich festgestellt werden, daß die Pollenkörner der untersuchten ertragsschwachen Sorten kugelig, ohne Keimfurchen und ohne Keimporen sind und daß Bacula und Tegmen eine geschlossene Schicht bilden. Ein hoher Ertrag ist jedoch nicht immer mit colporaten und keimfähigen Pollenkörnern korreliert; eine solche Ausnahme bilden z. B. die Blüten an den Geiztrieben der Rebensorte Picolit

    Interrogating islets in health and disease with single-cell technologies

    Get PDF
    BACKGROUND: Blood glucose levels are tightly controlled by the coordinated actions of hormone-producing endocrine cells that reside in pancreatic islets. Islet cell malfunction underlies diabetes development and progression. Due to the cellular heterogeneity within islets, it has been challenging to uncover how specific islet cells contribute to glucose homeostasis and diabetes pathogenesis. Recent advances in single-cell technologies and computational methods have opened up new avenues to resolve islet heterogeneity and study islet cell states in health and disease. SCOPE OF REVIEW: In the past year, a multitude of studies have been published that used single-cell approaches to interrogate the transcriptome and proteome of the different islet cell types. Here, we summarize the conclusions of these studies, as well as discuss the technologies used and the challenges faced with computational analysis of single-cell data from islet studies. MAJOR CONCLUSIONS: By analyzing single islet cells from rodents and humans at different ages and disease states, the studies reviewed here have provided new insight into endocrine cell function and facilitated a high resolution molecular characterization of poorly understood processes, including regeneration, maturation, and diabetes pathogenesis. Gene expression programs and pathways identified in these studies pave the way for the discovery of new targets and approaches to prevent, monitor, and treat diabetes

    The Deubiquitylase MATH-33 Controls DAF-16 Stability and Function in Metabolism and Longevity

    Get PDF
    SummaryFOXO family transcription factors are downstream effectors of Insulin/IGF-1 signaling (IIS) and major determinants of aging in organisms ranging from worms to man. The molecular mechanisms that actively promote DAF16/FOXO stability and function are unknown. Here we identify the deubiquitylating enzyme MATH-33 as an essential DAF-16 regulator in IIS, which stabilizes active DAF-16 protein levels and, as a consequence, influences DAF-16 functions, such as metabolism, stress response, and longevity in C. elegans. MATH-33 associates with DAF-16 in cellulo and in vitro. MATH-33 functions as a deubiquitylase by actively removing ubiquitin moieties from DAF-16, thus counteracting the action of the RLE-1 E3-ubiquitin ligase. Our findings support a model in which MATH-33 promotes DAF-16 stability in response to decreased IIS by directly modulating its ubiquitylation state, suggesting that regulated oscillations in the stability of DAF-16 protein play an integral role in controlling processes such as metabolism and longevity

    Dynamic Locomotor Capabilities Revealed by Early Dinosaur Trackmakers from Southern Africa

    Get PDF
    BACKGROUND: A new investigation of the sedimentology and ichnology of the Early Jurassic Moyeni tracksite in Lesotho, southern Africa has yielded new insights into the behavior and locomotor dynamics of early dinosaurs. METHODOLOGY/PRINCIPAL FINDINGS: The tracksite is an ancient point bar preserving a heterogeneous substrate of varied consistency and inclination that includes a ripple-marked riverbed, a bar slope, and a stable algal-matted bar top surface. Several basal ornithischian dinosaurs and a single theropod dinosaur crossed its surface within days or perhaps weeks of one another, but responded to substrate heterogeneity differently. Whereas the theropod trackmaker accommodated sloping and slippery surfaces by gripping the substrate with its pedal claws, the basal ornithischian trackmakers adjusted to the terrain by changing between quadrupedal and bipedal stance, wide and narrow gauge limb support (abduction range = 31 degrees ), and plantigrade and digitigrade foot posture. CONCLUSIONS/SIGNIFICANCE: The locomotor adjustments coincide with changes in substrate consistency along the trackway and appear to reflect 'real time' responses to a complex terrain. It is proposed that these responses foreshadow important locomotor transformations characterizing the later evolution of the two main dinosaur lineages. Ornithischians, which shifted from bipedal to quadrupedal posture at least three times in their evolutionary history, are shown to have been capable of adopting both postures early in their evolutionary history. The substrate-gripping behavior demonstrated by the early theropod, in turn, is consistent with the hypothesized function of pedal claws in bird ancestors

    The mTOR inhibitor rapamycin down-regulates the expression of the ubiquitin ligase subunit Skp2 in breast cancer cells

    Get PDF
    INTRODUCTION: Loss of the cyclin-dependent kinase inhibitor p27 is associated with poor prognosis in breast cancer. The decrease in p27 levels is mainly the result of enhanced proteasome-dependent degradation mediated by its specific ubiquitin ligase subunit S phase kinase protein 2 (Skp2). The mammalian target of rapamycin (mTOR) is a downstream mediator in the phosphoinositol 3' kinase (PI3K)/Akt pathway that down-regulates p27 levels in breast cancer. Rapamycin was found to stabilize p27 levels in breast cancer, but whether this effect is mediated through changes in Skp2 expression is unknown. METHODS: The expression of Skp2 mRNA and protein levels were examined in rapamycin-treated breast cancer cell lines. The effect of rapamycin on the degradation rate of Skp2 expression was examined in cycloheximide-treated cells and in relationship to the anaphase promoting complex/Cdh1 (APC\C) inhibitor Emi1. RESULTS: Rapamycin significantly decreased Skp2 mRNA and protein levels in a dose and time-dependent fashion, depending on the sensitivity of the cell line to rapamycin. The decrease in Skp2 levels in the different cell lines was followed by cell growth arrest at G1. In addition, rapamycin enhanced the degradation rate of Skp2 and down-regulated the expression of the APC\C inhibitor Emi1. CONCLUSION: These results suggest that Skp2, an important oncogene in the development and progression of breast cancer, may be a novel target for rapamycin treatment

    The Fossil Calibration Database—A New Resource for Divergence Dating

    Get PDF
    Fossils provide the principal basis for temporal calibrations, which are critical to the accuracy of divergence dating analyses. Translating fossil data into minimum and maximum bounds for calibrations is the most important—often least appreciated—step of divergence dating. Properly justified calibrations require the synthesis of phylogenetic, paleontological, and geological evidence and can be difficult for nonspecialists to formulate. The dynamic nature of the fossil record (e.g., new discoveries, taxonomic revisions, updates of global or local stratigraphy) requires that calibration data be updated continually lest they become obsolete. Here, we announce the Fossil Calibration Database (http://fossilcalibrations.org), a new open-access resource providing vetted fossil calibrations to the scientific community. Calibrations accessioned into this database are based on individual fossil specimens and follow best practices for phylogenetic justification and geochronological constraint. The associated Fossil Calibration Series, a calibration-themed publication series at Palaeontologia Electronica, will serve as a key pipeline for peer-reviewed calibrations to enter the databas
    corecore