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ABSTRACT

Background: Blood glucose levels are tightly controlled by the coordinated actions of hormone-producing endocrine cells that reside in
pancreatic islets. Islet cell malfunction underlies diabetes development and progression. Due to the cellular heterogeneity within islets, it has been
challenging to uncover how specific islet cells contribute to glucose homeostasis and diabetes pathogenesis. Recent advances in single-cell
technologies and computational methods have opened up new avenues to resolve islet heterogeneity and study islet cell states in health and
disease.
Scope of review: In the past year, a multitude of studies have been published that used single-cell approaches to interrogate the transcriptome
and proteome of the different islet cell types. Here, we summarize the conclusions of these studies, as well as discuss the technologies used and
the challenges faced with computational analysis of single-cell data from islet studies.
Major conclusions: By analyzing single islet cells from rodents and humans at different ages and disease states, the studies reviewed here have
provided new insight into endocrine cell function and facilitated a high resolution molecular characterization of poorly understood processes,
including regeneration, maturation, and diabetes pathogenesis. Gene expression programs and pathways identified in these studies pave the way
for the discovery of new targets and approaches to prevent, monitor, and treat diabetes.
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1. INTRODUCTION

The islets of Langerhans in the pancreas contain five different endo-
crine cell types, namely beta, alpha, delta, gamma (also called PP
cells), and epsilon cells, which each produce a different hormone.
These hormones are secreted in response to metabolic cues and
together orchestrate the maintenance of blood glucose homeostasis.
Pancreatic hormones do not function in isolation, but influence each
other’s release through endocrine, paracrine, and autocrine feedback
mechanisms [1,2]. It is well established that individual cells of a given
islet cell type are heterogeneous in nature and that this heterogeneity
forms an important basis for islet behavior [3]. Islet cell heterogeneity
has been most extensively studied for beta cells, which play a critical
role in the pathogenesis of diabetes. While it is well known that
damage or loss of beta cells causes diabetes, how other endocrine cell
types contribute to disease pathogenesis is not fully understood.
Moreover, it is still largely unclear if different cellular states and
subpopulations within islet cell types contribute to diabetes
pathogenesis.
First observations that beta cells are heterogeneous and differ in re-
gard to insulin secretion were made more than 30 years ago. Salomon
and Meda developed methods to visualize insulin release from
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individual beta cells and reported substantial differences between in-
dividual cells [4]. The idea of functionally relevant heterogeneity among
beta cells was further bolstered by studies showing that beta cell
subpopulations exhibit different sensitivity to glucose [5,6] and change
dynamically in response to glucose exposure [7e11]. It has been
further suggested that the functional state of individual beta cells af-
fects their fragility, as differences in insulin expression, glucose
responsiveness, and oxidative state between beta cells have been
associated with susceptibility to oxidative and cytokine-induced
damage [12e14]. In the 1990s, the use of microscopy techniques
and the development of fluorescent dyes greatly expanded the
research of islet function with a strong visual impact at the single-cell
level. Calcium imaging provided crucial information on the calcium
influx pattern in response to glucose in different islet cell types [15e
17]. Measurement of cytosolic calcium in individual beta cells further
revealed heterogeneity of calcium oscillations in response to different
secretagogues among individual beta cells [18]. One shortcoming of
these early studies was that they were conducted in dispersed islet
cells and therefore lacked spatial resolution and presence of func-
tionally relevant cues in the intact islet. Recent studies, using optical
interrogation of intact islets in tissue slices have overcome these
limitations and have convincingly demonstrated functional differences
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between individual beta cells in rodent and human islets [19e21]. In
addition to insulin secretion, heterogeneity among beta cells also exists
for other features. For example, beta cells differ with regard to their
proliferative activity [22,23] and expression of senescence markers,
such as p16Ink4a [24,25].
Until recently, most of our knowledge about how islet cells change their
molecular features in response to different physiological and patho-
logical conditions was obtained by studying whole islets. As these
studies detect global patterns, they represent an average dominated by
the most abundant cell types and thus mask contributions from more
rare cell types and subpopulations. Fluorescence-activated cell sorting
(FACS)-enrichment has been utilized to study alpha, beta, and delta
cell populations. In mice, this has been accomplished by genetically
tagging endocrine cell populations and isolating these cells based on a
fluorescent reporter [26e29]. This strategy, however, cannot be
applied to human cells, and sorting strategies for the less abundant
gamma and epsilon cells are not available. In humans, other methods,
such as cell sorting based on surface markers or intracellular proteins,
have been used to obtain cell type-specific transcriptomes of islet cells
[30e36]. But even with sorted cells, population-based profiling of islet
cell types masks the variation across individual cells, thus limiting
insight into different cell states or subpopulations. Recently, cell sorting
strategies have been developed that can separate beta cell sub-
populations in both mice and humans based on expression of specific
marker genes [23,31]. Molecular analysis of these subpopulations has
revealed differences with regard to proliferative capacity and respon-
siveness to nutrient cues. Grompe and colleagues identified distinct
beta cell populations in humans that exhibit differences in basal and
stimulated insulin secretion, as well as gene expression profiles [31].
The relative abundance of these subpopulations was found to be
significantly altered in islets from donors with type 2 diabetes (T2D). It
may be that the different subtypes influence pathogenesis through
differences in susceptibility to metabolic stress, proliferative capacity,
or maturation state.
Over the past decades, we have amassed a wealth of knowledge about
islet function in health and disease, employing electrophysiological,
microscopy, genetic, and population-based gene expression profiling
approaches. More recently, an abundance of different single-cell
technologies has been developed that allows even higher-
dimensional analyses of isolated single cells [37e39]. These new
techniques have been applied to islet cells, as demonstrated by
multiple papers published on this topic in the last year, and represent a
breakthrough in islet biology and diabetes research. In this review, we
summarize what we have learned from studying islets at the single-cell
level using new single-cell technologies to investigate islet cell func-
tion, physiology, and pathogenesis (Figure 1). Moreover, we highlight
current challenges encountered when analyzing the high-dimensional
data obtained using new single-cell technologies, as well as discuss
how these new technologies can be utilized in the future to further
interrogate islets.

2. NEW SINGLE-CELL METHODOLOGIES TO STUDY ISLET CELL
PHYSIOLOGY AND FUNCTION

Just in the past year, multiple studies using new single-cell technol-
ogies have been published with the goal to understand how specific
pancreatic cell types contribute to glucose homeostasis and diabetes
pathogenesis (Table 1). These studies analyzed different tissues,
including whole pancreas and isolated islets from mouse and human in
healthy and diabetic conditions. The studies varied greatly in regard to
the experimental technology used to generate single-cell expression
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data as well as applied methods for data analysis. To capture individual
cells from pancreatic tissue, flow cytometry [40e44] and microfluidic
methods [45e49] were utilized. While the most common technology
used to study the molecular profile of individual pancreatic cells has
been RNA-seq [41e49], proteomic approaches including imaging
mass spectrometry (IMS) and mass cytometry have also been applied
[40,50]. Recent advancements in computational methods and the
development of new algorithms to reconstruct and investigate mo-
lecular processes has aided in reducing these high-dimensional data to
an interpretable form. By revealing the cellular heterogeneity found in
the pancreas, studies using single-cell technologies have advanced
our understanding of cell function and cell communication in the
pancreas. The technologies enabled the study of less abundant islet
cell types and revealed previously unknown cellular states and sub-
populations of endocrine cells. Together, these studies have uncovered
new functions for islet cells and allowed a high-resolution molecular
characterization of poorly understood processes, including islet cell
regeneration, maturation, and T2D pathogenesis.

2.1. Adult islet cell function
Single-cell profiling allows the interrogation of less abundant endocrine
cell types, which have remained elusive in studies of both whole islets
and sorted islet cells. Multiple studies from this past year that have
uncovered the transcriptional signatures of individual human delta,
gamma, and epsilon cells from human islets suggest important and
novel roles for each islet cell type in sensing and integrating specific
systemic cues to govern islet function [42,43,47]. These novel insights
are based on the observations that receptors for cell signaling path-
ways are specifically enriched in individual islet cell types (Figure 1).
Compared to other islet cell types, delta cells, for example, highly
express receptors for leptin (LEPR) and ghrelin (GHSR) [42,43,47],
suggesting that pancreatic responses to these appetite-regulating
hormones are mediated by these cells. Indeed, work by Huising and
colleagues has recently demonstrated that ghrelin selectively activates
delta cells and promotes somatostatin release from pancreatic islets
[27]. Delta cells also exhibit high expression of receptors for specific
neurotransmitters (dopamine; DRD2) and growth factors (ERBB4)
[43,47], while gamma cells selectively express receptors for acetyl-
choline and serotonin [42,47]. Epsilon cells, which make up less than
1% of endocrine cells, also uniquely express various receptors for
neurotransmitters, endorphins, prostaglandins, and glycoproteins [43].
Thus, single-cell analysis has uncovered novel roles for these rare islet
cell types as integrators of systemic cues and metabolic signals in the
islet.
While much has been uncovered studying transcriptomes of the less
abundant endocrine cell types, novel insight gained by single-cell RNA-
seq analysis into the function of beta and alpha cells has been more
limited. Genes displaying high expression in beta or alpha cells
overlapped largely with those found in previous transcriptome studies
employing cell sorting methods to isolate beta or alpha cells from
mouse and human islets [43,47e49]. While the observation that beta
cells express genes associated with glucose sensing, uptake, and
metabolism confirmed prior studies, the single-cell analysis revealed a
previously not fully appreciated heterogeneity in gene expression
among individual beta cells. Previous studies provided evidence for
beta cell heterogeneity both at a functional and gene expression level
[21,23,31,51]; however, the extent of this heterogeneity could only be
fully resolved by single-cell analysis. Using computational methods,
such as principal component analysis (PCA) and t-Distributed Sto-
chastic Neighbor Embedding (tSNE) to visualize groups of cells with
similar transcriptional profiles, recent single-cell studies have
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Figure 1: Single-cell approaches to interrogate the transcriptome and proteome of islet cell types in health and disease. Transcriptomic and proteomic studies of single
islet cells have provided novel insights into islet cell function, proliferation and aging, and type 2 diabetes (T2D) pathogenesis. For example, single-cell studies have identified
receptors for neurotransmitters, growth factors, and hormones specifically expressed in epsilon, delta, and gamma cells (bottom, left panel), suggesting these rare islet cell types
integrate systemic cues and metabolic signals. Identification of transcriptionally distinct subpopulations of beta cells (bottom, left panel) and alpha cells (bottom, left and middle
panels) has provided insight into different functional states of endocrine cells as well as enabled profiling of rare proliferating cells. Proteomic profiling of single islet cells has
shown that multiple endocrine cell types exhibit reduced proliferation with age (bottom, middle panel). Finally, single-cell profiling has uncovered differentially expressed genes in
islet cells from healthy and diabetic individuals (bottom, right panel), showing contribution of multiple endocrine cell types to islet pathophysiology and revealing novel genes and
pathways with potential for therapeutic targeting.
identified multiple subpopulations of beta cells in healthy adult human
donors (Figure 1). For example, Sandberg and colleagues identified five
distinct subpopulations of human beta cells by comparing expression
values of the fifty most variable genes in these cells. While each
population had similar insulin levels, they differed in levels of specific
transcriptional regulators, fatty acid receptors, and adipokines [43]. For
example, two of the subpopulations identified expressed RBP4, an
adipokine found elevated in insulin-resistant mice and humans with
obesity and/or T2D [52]. These same populations also expressed the
free fatty acid receptor FFAR4 (GPR120), which has been implicated as
a regulator of apoptosis in human islets [53]. What distinguished these
two populations was expression of the helix-loop-helix transcriptional
MOLECULAR METABOLISM 6 (2017) 991e1001 � 2017 The Authors. Published by Elsevier GmbH. This is an op
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repressors ID1, ID2, and ID3, loss of which has been shown to enhance
insulin sensitivity and protect mice against diabetes [54e57]. Likely,
the different populations found in this study have different properties
regarding their response to metabolic stress and susceptibility to
diabetes. Interestingly, depending on the experimental setup and the
analytical methods used, the number of subpopulations and the genes
that identified each population varied between studies. For example,
other studies with human islets identified subpopulations based on
differences in expression of oxidative and endoplasmic reticulum (ER)
stress response genes [42,45] Notably, some groups did not find
evidence for beta cell subpopulations [47,49]. Interestingly, while
subpopulations were found among beta cells, no subpopulations were
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Table 1 e Summary of recent studies using single-cell approaches to study pancreatic islets.

Single-cell method Cell source Key findings in islets Reference

RNA-seq Pancreatic cells from 4 human adult donors - Identified cell-type-specific genes for alpha and beta cells
linked to T2D

- Observed subpopulations of beta cells distinguished by genes
implicated in ER and oxidative stress response

- Found delta and gamma cells express multiple receptors for
cell signaling pathways

Muraro et al., 2016
(Ref. [42])

RNA-seq Pancreatic cells from 10 healthy and T2D
adults

- Observed subpopulations of alpha and beta cells
- Found delta and epsilon cells express multiple receptors for
cell signaling pathways

- Identified genes differentially regulated between healthy and
T2D donors in alpha, beta, and gamma cells

Segerstople et al.,
2016 (Ref. [43])

RNA-seq Human islets from 8 healthy and T2D adults - Found delta and gamma cells express multiple receptors for
cell signaling pathways

- Identified genes differentially regulated between healthy and
T2D donors in alpha, beta, and delta cells

Lawlor et al., 2017
(Ref. [47])

RNA-seq Human islets from 18 healthy and T2D adults - Identified 245 genes dysregulated in endocrine cells from
T2D donors

- Observed high degree of similarity between the islet cell types

Xin et al., 2016
(Ref. [48])

RNA-seq Mouse islets - Observed high degree of similarity between the islet cell types Xin et al., 2016
(Ref. [49])

RNA-seq Mouse beta cells over postnatal time course - Obtained high-resolution map of beta cell transcriptome
dynamics after birth

- Demonstrated role for amino acids and ROS in postnatal beta
cell proliferation

Zeng et al., 2017
(Ref. [44])

Mass cytometry Human islets from 20 donors (including
children and healthy and T2D adults)

- Confirmed exponential decline in beta cell proliferation after
childhood

- Found alpha cells have the highest basal replication of all
endocrine cell types

- Identified three different cellular states of beta cells
- Found islet cell composition is partially age-dependent

Wang et al., 2016
(Ref. [40])

RNA-seq Human islets from 9 donors (including
children and healthy, T1D, and T2D adults)

- Identified role for sonic hedgehog signaling in alpha cell
proliferation

- Found alpha and beta cells from T2D donors have expression
profiles with features similar to juvenile beta cells

Wang et al., 2016
(Ref. [61])

RNA-seq Beta cells from 3- and 26- month old mice - Found beta cells from old mice have transcriptional profiles
similar to those of young mice

Xin et al., 2016
(Ref. [46])

RNA-seq Pancreas cells from 4 human adult donors
and 2 mouse strains

- Detected subpopulations of beta cells characterized by levels
of ER stress

Baron et al., 2016
(Ref. [45])

RNA-seq Human islets from 1 adult donor - Observed beta cell- and endocrine-specific expression of
genes associated with diabetes risk found in GWAS

Li et al., 2016
(Ref. [41])

MALDI MS Rat islets - Observed heterogeneity in cell composition between islets
based on location in pancreas

Jansson et al., 2016
(Ref. [50])
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uncovered within delta, gamma, and epsilon cells; however, a small
population of human alpha cells distinguished by high expression of
proliferation-associated genes was found in one study [43]. The dis-
covery of these different subpopulations within islet cell types may
offer important clues for understanding the functional status of
endocrine cells. Experiments designed to follow these subpopulations
over time could provide important insight into the flexibility of individual
islet cells to cycle between different functional states.

2.2. Islet cell proliferation and plasticity
It is well established that beta cell proliferation capacity declines
rapidly and severely with age [58,59]. Indeed, recent studies applying
single-cell RNA-seq in mice of different ages confirmed that as mice
age, there is a reduction in expression of cell cycle pathway genes in
beta cells [44,46]. However, it is unknown if other endocrine cells also
lose their capacity to replicate during adult life. To investigate this,
Kaestner and colleagues used single-cell mass cytometry to identify
proliferating cells in islets from twenty human donors aged 18 days to
65 years [40]. Mass cytometry, a technology that uses heavy metal
ions as labels for probes such as antibodies, rather than using fluo-
rochromes, enables the investigation of cell identity and behavior at the
994 MOLECULARMETABOLISM 6 (2017) 991e1001 � 2017 The Authors. Published by Elsevier GmbH. Th
level of proteins [60]. By labeling human islet cells with metal-
conjugated antibodies against the proliferation marker Ki67 along
with specific cell markers and measuring antibody abundance within
each cell using time-of-flight spectrometry, the group showed that
similar to beta cells, alpha and delta cells also exhibit reduced pro-
liferation with age (Figure 1).
Because endocrine cells replicate at a very slow rate, it has been
exceedingly difficult to study proliferating endocrine cells at the mo-
lecular level. Single-cell technologies have enabled transcriptional
profiling of these rare cells. Recent studies have begun to elucidate
differences of proliferating and non-proliferating alpha cells [43,61].
These studies have shown that proliferating alpha cells are tran-
scriptionally distinct from non-proliferating alpha cells (Figure 1). For
example, from healthy donors and donors with T2D, Sandberg and
colleagues identified twelve alpha cells that separated from other alpha
cells with two-dimensional data reduction by t-SNE [43]. These
constituted proliferating cells that were distinguished by a signature of
439 significantly upregulated genes consisting mainly of cell cycle
regulators. Additionally, based on high transcript expression of the
proliferation marker Ki-67, Kaestner and colleagues identified one
proliferating alpha cell in their single-cell RNA-seq profiling of healthy
is is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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human adult pancreas samples [61]. By comparing the profile of this
lone proliferating cell with quiescent alpha cells from the same donor,
they found that the sonic hedgehog (SHH) mitogenic pathway was only
activated in the proliferating cell. Moreover, both DYRK1A and GSK3B,
regulators of GLI transcription factors downstream of SHH signaling,
were repressed in the proliferating cell. This is consistent with studies
showing that inhibition of DYRK1A and GSK3B, using harmine and
aminopyrazine compounds, induces beta cell proliferation [62,63].
Profiling of proliferating islet cells provides clues to understanding
mechanisms of islet cell regeneration; however, the extent of similarity
between pathways activating alpha and beta cell proliferation remains
to be determined.
While transcriptomes of single proliferating human alpha cells have
been obtained from these studies, proliferating beta cells in the adult
human pancreas have yet to be captured. Likely, the total number of
single cells procured and analyzed in these studies has been too low to
obtain signatures of these very rare cells. The single cell mass
cytometry study by Kaestner and colleagues indicates that when
compared to the other endocrine cell types, alpha cells have the
highest basal replication rate in the adult islet (Figure 1) [40]. This high
rate of replication in alpha cells could be exploited to utilize alpha cells
as a source for new beta cells via cell fate conversion [64]. Indeed,
single-cell RNA-seq studies in both mouse and human islets have
shown that transcriptional profiles of alpha and beta cells exhibit
striking similarity, with only 26 genes being specifically enriched in
alpha cells and 151 genes in beta cells [48,49]. The high degree of
similarity between these two cell types suggests that a small number
of genes control cell identity, which may explain why under conditions
of extreme beta cell loss, alpha cells spontaneously transdifferentiate
into beta cells [65]. Now, recent studies show that stimulation of
GABAA receptor signaling can induce alpha-to-beta cell conversion in
rodent and possibly also human islets [66,67], suggesting the exis-
tence of druggable targets for the regeneration of beta cell mass from
alpha cells.

2.3. Beta cell replication, functional maturation, and aging
Recent studies have shown an association of beta cell replication with
reduced expression of genes that define the main function of adult beta
cells, namely the production and release of insulin in response to
glucose [68]. Beta cell replication capacity rapidly declines with age,
and this process has been shown to coincide with increased beta cell
secretory function [25,28,69]. To begin to understand how transcrip-
tional differences contribute to improved secretory function with age, a
few groups have compared transcriptomes of individual beta cells from
young and aged rodents and humans. In one study, Gromada and
colleagues performed single-cell RNA-seq on beta cells from 3- and
26-month-old mice and found that beta cells from very old mice have a
similar gene expression signature as beta cells from young mice, with
the exception of a small number of genes encoding transcription
factors, cell cycle regulators, and regulators of cell death [46]. How-
ever, by three months of age, proliferation rates are already quite low
in mice [59] and almost comparable to aged mice. This may explain
why studies comparing transcriptomes of sorted beta cell populations
from mice at 4e6 weeks of age and 16e20 months of age uncovered
a greater number of differentially expressed genes [28]. Another
single-cell transcriptome study of human pancreas cells compared
endocrine cells from children as young as 19 months to adults and
found that beta and alpha cells in children are more similar to each
other than adult alpha and beta cells [61]. Specifically, many alpha cell
signature genes identified in adult alpha cells were found to be
expressed in juvenile beta cells. Likewise, beta cell signature genes
MOLECULAR METABOLISM 6 (2017) 991e1001 � 2017 The Authors. Published by Elsevier GmbH. This is an op
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were expressed in juvenile alpha cells. As gene set enrichment scores
for adult endocrine cell signatures were lower in juvenile alpha and
beta cells, this would indicate these cells were in the process of
maturing to a fully functional state.
After birth, pancreatic endocrine cells achieve a fully differentiated
state after completion of a maturation process, which takes place in
the early postnatal period [70]. The steps toward beta cell maturation,
which likely involve changes in gene expression programs, had been
poorly understood. To probe this process, our group generated single-
cell RNA-seq data of mouse beta cells from multiple early postnatal
time points [44]. Then, to obtain a high-resolution map of beta cell
transcriptome dynamics after birth, we ordered beta cells based on
transcriptional similarity using 1D-PCA. The method allowed the
exploration of gene patterns over a reconstructed early postnatal
developmental trajectory and exposed previously unrecognized tran-
scriptional dynamics of maturation. For instance, we found that
immature, proliferative beta cells exhibit high expression of regulators
of amino acid metabolism and mitochondrial activity as well as a
network of nutrient responsive transcription factors [44]. Reduced
expression of these components correlated with diminished prolifer-
ation with age. Furthermore, experimentally reducing levels of mito-
chondrial reactive oxygen species during postnatal beta cell
development led to lower beta cell proliferation rates and reduced beta
cell mass. The high expression of components of the mitochondrial
respiratory chain in proliferating beta cells is consistent with an earlier
study by Dor and colleagues comparing transcriptomes of sorted
proliferating and quiescent beta cells [68]. Moreover, mild ER stress
has been shown to promote beta cell proliferation [71] and the tran-
scription factors found in our study are downstream effectors of this
pathway. Interestingly, using a method based on 1D-PCA, Yanai and
colleagues found subpopulations of beta cells in healthy human donors
that were distinguished by high expression of either ER stress-
inducible genes (i.e. HERPUD1, HSPA5, and DDIT3) or functional
genes (CHGA, UCN3, NEUROD1, and MAFA) [45]. Subpopulations with
high expression of ER stress genes and low expression of functional
genes could represent beta cells that are proliferating or that have the
potential to proliferate. Supporting this idea, our study of single mouse
beta cells during early postnatal development identified ER stress
markers as enriched in proliferative beta cells [44]. The combined
evidence from these studies suggests that improved function of beta
cells, as seen in the course of beta cell maturation and aging
[25,72,73], is at the expense of regenerative potential. By revealing
novel pathways regulating beta cell maturation and proliferation, these
studies have important implications in identifying therapeutic targets to
stimulate beta cell regeneration.

3. SINGLE-CELL PROFILING TO UNDERSTAND MECHANISMS
OF ISLET PATHOPHYSIOLOGY AND DIABETES

Identifying gene expression programs and pathways that contribute to
islet dysfunction and diabetes are a critical step toward identifying drug
targets and approaches to prevent, monitor, and treat diabetes.
Several studies have reported differences in gene expression profiles
between islets from normoglycemic individuals and those with T2D
[32,53,74,75]. However, the observed differences are difficult to
interpret, because these studies performed transcriptome analysis of
whole islets. The population-based analysis leaves unclear how indi-
vidual cell types or subpopulation of cells within a particular islet cell
lineage contribute to the observed differences.
One challenge that has made it difficult to compare gene expression
profiles of whole islet preparations from normal and diabetic
en access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 995
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individuals is the substantial variation in islet cell type composition
among human islets from different donors [76]. An additional obstacle
is that the proportion between islet cell types is altered in T2D [77e
79]. The observation that human islets are heterogeneous with re-
gard to cell type composition has recently been confirmed by single-
cell RNA-seq studies [43,47]. Moreover, using single-cell mass
cytometry, Kaestner and colleagues found that donor-to-donor vari-
ability in cellular composition is partially age-dependent [40]. To
enable a meaningful comparison of whole islet RNA-seq data from
healthy and T2D individuals, Yanai and colleagues developed a
computational method to resolve cell type heterogeneity by decon-
volving bulk RNA-seq data sets [45]. To estimate the proportion of each
cell type in the whole islet preparations, their method utilizes single-
cell gene expression data to identify primary defining genes specific
for each cell type. Importantly, applying this method, they found that a
large number of genes identified in bulk transcriptome analysis as
differentially expressed between diabetic and healthy donors is likely
variable due to cell type composition differences between donors,
leading to false assumptions about differential gene expression in beta
cells from healthy and diabetic individuals. Similarly, differential
expression of some genes between these two groups was masked by
the cell population differences. Using the algorithm to correct for cell
population differences, the authors noted cell type-specific effects of
the hyperglycemic state on gene expression in alpha and beta cells.
The analysis revealed upregulation of functional genes, such as UCN3
and NEUROD1, in alpha cells and downregulation of ER stress-related
genes in beta cells.
Single-cell RNA-seq studies also suggest that, in addition to beta cells,
other endocrine cell types may contribute to islet pathophysiology
[41,43,47,48]. For example, genes linked to rare and common forms of
islet dysfunction and diabetes were found to be expressed in human
delta and gamma cells [47]. Additionally, several genes associated
with increased risk for the development of diabetes, identified through
genome-wide association studies (GWAS), were found to have differ-
ential expression between human endocrine cell types [41,47]. A
potential contribution of other endocrine cell types, including alpha,
delta, and gamma cells, to diabetes pathogenesis was also suggested
by differential expression studies comparing transcriptomes of single
islet cells from healthy and T2D donors [43,47]. Gene set enrichment
analysis (GSEA) showed that genes controlling energy metabolism in
mitochondria and protein synthesis were significantly downregulated
in most cell types in individuals with T2D, while genes linked to
apoptosis, diabetic nephropathy, and cytokine signaling were upre-
gulated [43]. Novel genes not previously implicated in diabetes or islet
function, including genes encoding GPCRs, ion channels, transcription
factors, as well as lncRNAs, were also identified in these studies. The
biological significance of these gene regulatory differences in T2D
pathogenesis remains unclear and further investigation of the roles of
these genes in non-beta islet cell types is needed.
Looking at differentially expressed genes in healthy and diabetic beta
cells may also offer clues on causes of beta cell death in the diabetic
state (Figure 1). RNA-seq studies from Sandberg and colleagues have
shown that in beta cells the most significantly downregulated gene is
the ion transporter regulator FXYD2 [43]. Loss of this beta cell-specific
gene has been previously associated with loss of insulin-expressing
cells in patients with type 1 diabetes (T1D) [80], suggesting com-
mon mechanisms regulating beta cell death in these two types of
diabetes. This same study also found that beta cells from donors with
T2D showed upregulation of genes associated with metabolism, such
as GPD2 and LEPROTL1/Endospanin-2. GDP2, which catalyzes the
conversion of glycerol-3-phosphate to dihydroxyacetone phosphate
996 MOLECULARMETABOLISM 6 (2017) 991e1001 � 2017 The Authors. Published by Elsevier GmbH. Th
using FAD as a cofactor, couples glycolysis with activation of mito-
chondrial energy metabolism to trigger insulin secretion [81].
LEPROTL1/Endospanin-2 has been shown to regulate cell surface
expression of the leptin receptor, which is key for modulating energy
balance and body weight [82]. It may be that dysregulation of these
genes changes metabolic activity of beta cells and affects how beta
cells respond to environmental cues, contributing to their dysfunction.
Previous studies have suggested that beta cell dedifferentiation may
underlie beta cell loss in T2D [83e85]. Indeed, Kaestner and col-
leagues’ single-cell study suggests that this might be the case [61].
They found that beta cell gene signatures from diabetic adults had
expression profiles similar to those seen in children. The immature
gene expression signature of beta cells in the diabetic state included
misexpression of cell cycle and insulin secretory genes, suggesting
that beta cells from individuals with T2D are not able to maintain a fully
differentiated gene expression profile. Notably, a study by Stitzel and
colleagues came to a different conclusion; they found no transcrip-
tional evidence for dedifferentiated beta cells in T2D islets [47]. In their
analysis of single-cell transcriptomes from T2D and healthy islet cells,
there was no significant difference in the expression of genes reported
to be differentially regulated during dedifferentiation, including FOXO1,
NANOG, and POU5F1 [83]. Moreover, they did not observe significant
shifts in islet cell populations or increases in numbers of hormone-
negative cells. It may be possible that dedifferentiated cells were not
captured in the latter study and that further studies are needed to
determine if beta cell dedifferentiation does indeed occur in T2D.
The use of new single-cell technologies to study transcriptional al-
terations in T2D not only has pointed to novel molecular contributions
of specific islet cell types in diabetes but also has provided clues about
possible pathways and mechanisms associated with diabetes pa-
thology. Further studies validating the genes and pathways revealed by
single-cell studies as candidates for therapeutic targeting are likely on
the horizon.

4. CHALLENGES OF SINGLE-CELL ANALYSIS

Single-cell technologies have the potential to greatly improve our
understanding of how individual cells contribute to islet function and
pathogenesis by providing unprecedented access to unique tran-
scriptomic and proteomic signatures. However, there are many chal-
lenges in analyzing the resulting high-dimensional, complex data sets.
For both transcriptomic- and proteomic-based analysis of single-cell
data, there are no established standards for data pre-processing and
noise removal, which can affect interpretation of the data in significant
ways. Methods to cope with the inherent noise and the high dimen-
sionality of single-cell data are still being evaluated, and proper
application of these strategies is crucial to not only discern genuine
gene expression from technical artifacts but also to compare data
across different laboratories and instruments. While multiple papers
have reported methods to analyze transcriptomic and proteomic
single-cell data [86e88], the best use of these novel bioinformatic
tools is still a subject of debate.
One major challenge facing single-cell RNA-seq data analysis is
overcoming unwanted sources of variation that originate from ampli-
fication biases in the sequencing protocol and/or experimental vari-
ability. This is key to correctly interpreting results, and, despite the
numerous approaches developed to remove these unwanted factors, it
remains a non-trivial problem. To estimate technical sources of vari-
ation arising during amplification of low input material amounts,
several islet single-cell studies have taken advantage of External RNA
Control Consortium (ERCC) spike-in controls, a set of 92 RNAs with
is is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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different lengths and concentrations that are carried along through the
library preparation and sequencing process of individual cells
[41,42,61,89]. However, exogenous spike-in standards have several
caveats, including a shorter RNA length compared to average human
mRNAs, which may result in transcription efficiency bias [89]. In fact,
the ratio of reads mapped to the spike-ins is often indicative of bio-
logically relevant variability instead of quality, especially when dealing
with cells at different stages of the cell cycle [89]. To overcome these
problems, other approaches have been proposed to estimate technical
noise and normalize data in the absence of spike-ins [86,90]. These
methods compute the coefficient of variation (CV) for each gene to
define noisy genes. By definition, the CV is inversely proportional to the
mean expression value of a gene. Genes with high CV values reflect
heterogeneity within the cell population under study, while CV values
below a certain threshold would be considered noise. However, this
can be problematic when analyzing gene expression data from
endocrine cells, as INS, PPY, and SST transcripts alone account for
more than 50% of the total cellular transcripts in beta, gamma, and
delta cells, respectively [43], and the high expression values result in
low CV values for these genes. Thus, a major challenge in the appli-
cation of these noise reduction approaches to the study of endocrine
cells is the identification of a suitable threshold of CV that would enable
noise removal while retaining key cellular identity genes in the
analysis.
Reliable and more conservative approaches based on surrogate vari-
able analysis (SVA) have been employed in many contexts and can be
used to identify batch effects and other hidden sources of unwanted
variation [87,88]. SVA distinguishes sources of expression variation
that are due to technical artifacts (surrogate variables) from the bio-
logical signal. Given a model specifying the variables of interest (i.e.
disease states), SVA identifies genomic data affected by artifacts and
uses a mathematical model to adjust the data for subsequent analysis.
As the estimated variability may include differences due to cell cycle or
other biological factors, a careful analysis of both the parameters used
and expected cell groupings or gene patterns is crucial to define a
model for noise estimation that best fits the study. Indeed, cell cycle or
other variables can be treated as confounding factors and can be
explicitly modeled prior to gene pattern analysis [91]. Recently, a
similar approach was used by Sandberg and colleagues to model the
“donor effect”, representing the variability of pancreatic samples
coming from different human donors [43]. As discussed above, the
authors identified a group of proliferating alpha cells distinguished by a
gene signature of cell cycle regulators. Notably, this group of cells was
not detectable before removing the donor effect with Combat, a batch
effect removal tool that is particularly powerful in analyzing low sample
size data [92]. Methods for SVA can also be used to normalize samples
collected under different conditions, a step particularly important when
comparing single-cell data with publically available datasets. Using
Combat, Kubicek and colleagues were able to directly compare the
different pancreatic cell types under study with previously published
data in a single multidimensional scaling plot [41]. While comparison
with published data is extremely useful to assess the validity of an
experiment, it emphasizes the need for data rescaling and batch effect
removal approaches to eliminate the effects of different experimental
settings underlying each separate dataset.
Another major challenge in single-cell studies is the visualization and
extraction of biologically relevant patterns in high-dimensional data. In
order to visualize cell-to-cell similarities among islet cell types and to
distinguish subpopulations with a similar transcriptional signature,
most studies took advantage of dimensionality reduction techniques
such as PCA, tSNE, and other clustering methods [41e43,45,48,49].
MOLECULAR METABOLISM 6 (2017) 991e1001 � 2017 The Authors. Published by Elsevier GmbH. This is an op
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Using these methods, cells can be assigned into groups (cell-type
calling) based on their expression of cell-specific marker genes. One
significant challenge has been to define cells whose transcriptome or
proteome do not cluster with other groups, e.g. those forming isolated
groups in PCA plots or placed on distinct branches of a hierarchical
clustering dendrogram. The function of these cells could be investi-
gated by examining genes that best distinguish them, as defined by
differential analysis or highest loadings genes with PCA analysis.
However, given the limited number of cells for analysis, conclusions
should be drawn with a degree of caution. In addition, the use of
different clustering approaches to perform cell type calling as well as
lack of established tools for noise reduction may pose an issue in
reproducibility across studies. This has been demonstrated in recent
studies that have identified subpopulations within the islet cell types.
While some studies showed the existence of alpha and beta cell
subpopulations with distinct gene signatures [42,43,45], others did not
observe existence of such subpopulations [47,49]. The increasing
number of studies with large sample sizes and the availability of ac-
curate comparative methodologies should help to assess which sub-
populations have a consistent role in islet biology. For instance, more
reliable clusters of endocrine cells could be obtained using methods
robust to missing data (such as model-based clustering) or suitable for
binary data (based on Jaccard distance) [37]. One cannot be certain
that the distinct subpopulations found are an artifact of experimental or
clustering methods. Additional validation of the groupings could be
obtained by systematically comparing multiple datasets using the
same analytical pipeline after proper batch effect removal [41]. In
addition, computational methods to assess the optimal number of
clusters, such as the Silhouette index, could be exploited to further
evaluate different cell groupings.
Dimensionality reduction techniques can also be used to infer trajec-
tories of cellular events, as demonstrated by ordering cells according
to their maturation level, as shown in beta cells [44] and in other
contexts [90,93,94]. In the past two years, methods to infer a temporal
trajectory of single cells by analyzing transcriptomes have become
available [94]. While these tools could be useful for studying islet cells,
the lack of intuitive tools for some of the methodologies and the limited
guides that help biologists identify the most suitable approach for their
data make the use of ordering methods challenging. To facilitate the
comparison of cell orderings obtained with different methodologies, Ji
and Ji have developed the “Pseudotemporal Ordering Score” (POS)
[94]. However, the POS cannot be applied to all methods; therefore,
additional methods for comparison of cell ordering results are needed.
The high-dimensional nature of data obtained from single-cell prote-
omic datasets also possess challenges in analyzing data bio-
informatically. Single-cell mass cytometry studies have enabled the
study of proliferation rates of pancreatic endocrine cells [40]; however,
this method could help address many other questions. For instance,
mass cytometry data have been explored to identify novel cell subtypes
[95], to examine progression of cellular programs [96], or to analyze
cellular networks [97]. To interpret the complex dynamics underlying
mass cytometry data, bioinformatic approaches using visualization
strategies are required. Among those discussed, tSNE is an intriguing
method that is becoming widely used for the analysis of all types of
cytometric data [98]. As implemented in the software viSNE, this
method maps cell-to-cell similarity in a two-dimensional space without
assigning cells to mutually exclusive clusters. However, wide spread
use of these advanced methods may be limited because they require
significant computational resources.
Taken together, the outlined challenges demonstrate that in order to
obtain biologically relevant results, researchers with biological and
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Review
computational backgrounds need to collaborate when analyzing
single-cell data. In the future, new methodologies and computational
strategies are required to fully exploit high-resolution data from single
cells. The development of such methods will facilitate further explo-
ration of data from individual islet cells for a better understanding of
gene and protein regulation in islet health and disease.

5. PERPECTIVES AND FUTURE OUTLOOK

While the recent surge of single-cell studies on pancreatic cells has
improved our understanding of pancreatic cell function, the studies
have shed little light on how transcriptomic and proteomic landscapes
are spatially organized throughout the pancreas. Single-cell studies of
pancreatic cells so far have used dissociation approaches to capture
single cells, removing information about a cell’s original spatial context
and cellular environment. New imaging-based technologies now allow
us to gain spatial resolution while measuring the transcriptome or
proteome of single cells. Imaging-based techniques, including smFISH
[99,100], Padlock probes and RCA [101,102], and Branched FISH
[103,104], are technically easier than other high-throughput tech-
niques and enable robust quantification of a small number of tran-
scripts in intact tissues through fluorescently labeled probes. With
recent advances using sequential barcoding or multiple probes with
smFISH and Branched FISH, it is now possible to identify many tran-
scripts in a single cell [105]. In order to quantify a large number of
transcripts, more complex sequencing-based approaches have been
proposed that enable RNA extraction from discrete regions or
anatomical locations. One of these technologies, TIVA (transcriptome
in vivo analysis), was recently used to profile the transcriptomes of
single neurons from intact brain tissue. From this study, the authors
were able to demonstrate that the tissue microenvironment shapes the
transcriptomic landscape of individual cells [106]. Such character-
ization is also possible at the protein level using approaches based on
mass cytometry. Landmark methods combining high-resolution laser
ablation with mass cytometry to simultaneously measure cell distance
and protein levels by mass spectrometry have succeeded in coupling
protein expression with information on cell location in the tissue [107].
Crucial spatiotemporal interdependencies could also be revealed using
these spatially resolving technologies when evaluating multiple time
points though maturation or disease progression. For example, spatial
information can be combined with reconstructed temporal profiles of
cells, similar to the pseudotime scale generated in our study of beta cell
maturation dynamics [44]. If the spatial location of a cell is known,
patterns of gene or protein expression can be discerned, which will help
identify relevant cell-cell signaling circuits in complex tissues. To this
end, methods have been developed to cluster cells using both spatial
and quantitative information via a Markov random field (MRF)-based
approach [108]. MRF is a statistical method that enables modeling
entities composed of multiple discrete sites, such as a biological tissue,
with sites corresponding to cells. An MRF model can be represented as
a graph in which each cell is a node that is linked to the immediate
neighbors in the tissue. From this, an optimal clustering structure that
preserves both gene expression similarity as well as spatial de-
pendencies between cells can be obtained. As demonstrated, methods
that directly include spatial coordinates in the clustering scheme are
more likely to identify biologically relevant cell signatures compared to
approaches that only consider transcriptomic information [108].
Single-cell RNA-seq has enabled the identification of cell types and
subpopulations based on characteristic gene expression patterns;
however, populations can also be distinguished by distinct patterns of
accessibility and modification of regulatory DNA sequences [109e
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111]. Recent advances in single-cell ChIP-seq technologies now
allow mapping of histone modifications at single-cell levels with
reduced background noise to uncover genomic features and tran-
scriptional states of individual cells [112]. Other novel deep sequencing
assays, such as single-cell ATAC-seq and single-cell Hi-C, can explore
variation in chromatin accessibility between single cells [113e115].
Single-cell ATAC-seq interrogates the entire genome for accessibility
to DNA binding proteins, providing insights into cell-to-cell variation
with regard to specific trans-factors and cis-elements that determine
three-dimensional genome organization [114]. Moreover, single-cell
Hi-C explores interdomain contacts within chromosomes to capture
the conformation of individual cell genomes [113,115]. These methods
shift average estimates of chromosome architecture from a population
of cells to an exact quantification for each cell, ultimately providing
information on variability in genome activity patterns.
Integrative approaches that combine different data sources are needed
to obtain a complete picture of the differences between cell types and
subpopulations within the pancreas. If used in combination, these
methodologies would allow the exploration of how molecular features,
including chromatin, gene expression, and/or protein expression, are
co-regulated in both time and space. In addition to approaches inte-
grating spatial coordinates with transcriptomic data discussed above,
efforts have been made in other fields to combine genome and tran-
scriptome information from the same cell [95,96,116,117]. Similarly,
integrated single-cell approaches can be applied to study pancreatic
cells. For example, proteomic data from single-cell mass cytometry
studies showing inter-islet differences based on location in the
pancreas [50] can be combined with transcriptomic and genomic data
to determine how individual islets differ and if these features are of
functional significance. With the popularity and potential of single-cell
research in islet biology, it is likely that we will see more studies
combining single-cell transcriptome and proteome data with epige-
netic and spatially resolved technologies, getting us closer to a com-
plete and comprehensive view of islet function in health and disease.
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