8 research outputs found

    Hepatitis C virus molecular evolution: Transmission, disease progression and antiviral therapy

    Get PDF
    Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era.Fil: Preciado, María Victoria. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños ; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Valva, Pamela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de la Ciudad de Buenos Aires. Hospital General de Niños ; ArgentinaFil: Escobar Gutierrez, Alejandro. Instituto de Diagnóstico y Referencia Epidemiológicos; MéxicoFil: Rahal, Paula. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Ruiz Tovar, Karina. Instituto de Diagnóstico y Referencia Epidemiológicos; MéxicoFil: Yamasaki, Lilian. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Vazquez Chacon, Carlos. Instituto de Diagnóstico y Referencia Epidemiológicos; MéxicoFil: Martinez Guarneros, Armando. Instituto de Diagnóstico y Referencia Epidemiológicos; MéxicoFil: Carpio Pedroza, Juan Carlos. Instituto de Diagnóstico y Referencia Epidemiológicos; MéxicoFil: Fonseca Coronado, Salvador. Universidad Nacional Autónoma de México; MéxicoFil: Cruz Rivera, Mayra. Universidad Nacional Autónoma de México; Méxic

    Vertical transmission of hepatitis C virus: A tale of multiple outcomes

    No full text
    Globally, hepatitis C virus (HCV) infection affects approximately 130 million people and 3 million new infections occur annually. HCV is also recognized as an important cause of chronic liver disease in children. The absence of proofreading properties of the HCV RNA polymerase leads to a highly error prone replication process, allowing HCV to escape host immune response. The adaptive nature of HCV evolution dictates the outcome of the disease in many ways. Here, we investigated the molecular evolution of HCV in three unrelated children who acquired chronic HCV infection as a result of mother-to-child transmission, two of whom were also coinfected with HIV-1. The persistence of discrete HCV variants and their population structure were assessed using median joining network and Bayesian approaches. While patterns of viral evolution clearly differed between subjects, immune system dysfunction related to HIV coinfection or persistent HCV seronegativity stand as potential mechanisms to explain the lack of molecular evolution observed in these three cases. In contrast, treatment of HCV infection with PegIFN, which did not lead to sustained virologic responses in all 3 cases, was not associated with commensurate variations in the complexity of the variant spectrum. Finally, the differences in the degree of divergence suggest that the mode of transmission of the virus was not the main factor driving viral evolution. (C) 2013 Elsevier B. V. All rights reserved

    Report of autochthonous cases of localized cutaneous leishmaniasis caused by Leishmania (Leishmania) mexicana in vulnerable, susceptible areas of Southeastern Mexico

    Get PDF
    Localized cutaneous leishmaniasis (LCL) is an endemic disease in several Mexican States with the main endemic areas located in the South-Southeast region of the country, where 90% of Leishmania (Leishmania) mexicana cases are registered. The Southeast region is located in the Yucatan Peninsula, including Campeche, Quintana Roo and Yucatan States. Campeche and Quintana Roo register more than 60% of the cases in the country each year, while in Yucatan the reports are of imported cases due to residents traveling to endemic areas. However, since 2015, autochthonous cases have been diagnosed by health authorities in municipalities with no previous transmission records. We aimed to identify Leishmania parasite species involved in autochthonous cases by means of the PCR technique. The present study included 13 autochthonous cases of LCL with clinical and parasitological diagnoses during 2018 and 2019 by health authorities, without specific identification of the causal agent. Tissue samples were taken by scraping the margins of active lesions and then they were spotted onto an FTATM Elute Microcard. Next, DNA was eluted and used for PCR amplification of specific Leishmania genus and L. (L.) mexicana species-specific fragments. Molecular analysis showed evidence that L. (L.) mexicana was the causal agent of LCL in 12 of the 13 patients; in one patient, PCR was not performed due to the patient’s refusal to participate in the study. Identifying Leishmania species that cause LCL is necessary to define efficient treatment schemes and control strategies for the disease in vulnerable and susceptible areas of the Yucatan State’s municipalities

    Interleukin-28B Genotyping by Melt-Mismatch Amplification Mutation Assay PCR Analysis Using Single Nucleotide Polymorphisms rs12979860 and rs8099917, a Useful Tool for Prediction of Therapy Response in Hepatitis C Patients â–¿

    No full text
    Several studies have identified associations between single nucleotide polymorphisms (SNPs) occurring near the interleukin-28B (IL-28B) gene and response to antiviral treatment among hepatitis C virus (HCV) patients. Here, we describe a reliable melt-mismatch amplification mutation assay (melt-MAMA) PCR-based genotyping method for IL-28B which can be used in the management of HCV patients, helping to better define the course of therapy

    Molecular Epidemiology of Autochthonous Dengue Virus Strains Circulating in Mexico â–¿

    No full text
    Dengue virus (DENV) is the most important arthropod-borne viral infection in humans. Here, the genetic relatedness among autochthonous DENV Mexican isolates was assessed. Phylogenetic and median-joining network analyses showed that viral strains recovered from different geographic locations are genetically related and relatively homogeneous, exhibiting limited nucleotide diversity
    corecore