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Abstract
Hepatitis C virus (HCV) infection represents an im-

portant public health problem worldwide. Reduction 
of HCV morbidity and mortality is a current challenge 
owned to several viral and host factors. Virus molecular 
evolution plays an important role in HCV transmission, 
disease progression and therapy outcome. The high 
degree of genetic heterogeneity characteristic of HCV 
is a key element for the rapid adaptation of the intra-
host viral population to different selection pressures 
(e.g. , host immune responses and antiviral therapy). 
HCV molecular evolution is shaped by different mecha-
nisms including a high mutation rate, genetic bottle-
necks, genetic drift, recombination, temporal varia-
tions and compartmentalization. These evolutionary 
processes constantly rearrange the composition of the 
HCV intrahost population in a staging manner. Remark-
able advances in the understanding of the molecular 
mechanism controlling HCV replication have facilitated 
the development of a plethora of direct-acting antiviral 
agents against HCV. As a result, superior sustained vi-
ral responses have been attained. The rapidly evolving 
field of anti-HCV therapy is expected to broad its land-
scape even further with newer, more potent antivirals, 
bringing us one step closer to the IFN-free era.

© 2014 Baishideng Publishing Group Inc. All rights reserved.
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Core tip: Hepatitis C virus (HCV) infection remains as 
an important public health problem worldwide. Viral 
molecular evolution determines, in many ways, the 
outcome of HCV infection. Here, we present up-to-date 
information about the role of HCV molecular evolution 
in virus ransmission, disease progression and antiviral 
therapy.
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INTRODUCTION
Globally, hepatitis C virus (HCV) infection affects ap-
proximately 180 million people[1], in addition to three 
million new infections occurring annually[2,3]. The preva-
lence of  HCV infection varies greatly from region to 
region, and as a result, the burden of  disease exhibits 
important differences worldwide[2]. HCV is one of  the 
leading causes of  chronic liver disease associated with 
end-stage cirrhosis and hepatocellular carcinoma[4], with 
approximate 20% of  chronically infected patients devel-
oping cirrhosis, and about 10% progressing to cancer[5].

HCV is a small single-stranded, positive polarity, en-
veloped virus belonging to the Hepacivirus genus within 
the Flaviviridae family. The RNA genome (about 9.6 kb 
in length) contains a single open reading frame (ORF) 
encoding for a polyprotein which is flanked by a 5’- and 3’
-untranslated regions (UTR). The 5’-UTR contains an in-
ternal ribosomal entry site (IRES) which is essential for 
viral replication. The polyprotein is processed into three 
structural proteins (C, E1, E2) and seven nonstructural 
proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, NS5B) 
(Figure 1)[6,7]. The HCV core is a highly conserved pro-
tein that makes up the viral nucleocapsid and plays role 
in pathogenesis[8]. E1 and E2 are highly glycosylated pro-
teins that participate in cell entry (Figure 2)[9]. E2 contains 
three hypervariable regions (HVR), known as HVR1-3[10], 
which are under continuous selection pressure exerted by 
the host immune system. P7 is a 63-amino acid polypep-
tide that serves as a signal sequence for the translocation 
of  NS2 into the lumen of  the endoplasmic reticulum 
(ER) for further cleavage. P7 is also essential for par-
ticle assembly and release of  infectious virions[11,12]. NS2 
is a transmembrane protein required for viral replica-
tion while NS3 is the HCV protease and NTPase/heli-
case[13,14]. The HCV protease disrupts the interferon (IFN) 
and toll-like receptor-3 (TLR3) signaling pathways by 
cleaving host proteins including the caspase recruitment 
domain (CARD) of  the mitochondrial antiviral signaling 
protein (MAVS)[15,16], and TIR-domain-containing adapt-
er-inducing interferon-β (TRIF) (Figure 2)[17]. NS4A acts 
as a cofactor for the NS3 protease and NS4B is a small 
hydrophobic protein required for recruitment of  other 
viral proteins[18,19]. NS5A is a hydrophilic phosphoprotein 
needed for viral replication[20,21]. Lastly, NS5B is the HCV 
RNA dependent RNA polymerase (RdRp)[22], which 
lacks proofreading and error correction mechanisms, re-
sulting in a highly error prone replication process[23].

HCV virions bind to the host cellular receptors via 

E2[6]. The initial viral attachment is mediated by heparin 
sulfate proteoglicans on the hepatocyte surface[24]. Multi-
ple cellular receptors such as the scavenger receptor class 
B type Ⅰ (SRB1)[25], CD81[26,27], claudin-1 (CLDN1)[28], 
and occludin (OCLN)[29], in addition to several entry fac-
tors including the receptor tyrosine kinases (RTK), the 
epidermal growth factor receptor (EGFR)[30], the ephrin 
receptor A2 (EphA2)[30] and the Niemann-Pick C1-like 1 
cholesterol absorption receptor (NPC1L1)[31] have been 
identified (Figure 2). Once bound to the cell, HCV par-
ticles are then internalized by pH-dependent and clathrin 
mediated endocytosis[32,33]. Upon entry, the viral genome 
is released from the nucleocapsid into the cytoplasm and 
subsequently translated. The NS4B then induces the for-
mation of  membranous webs that serve as scaffolds for 
viral replication. After genome amplification and protein 
expression, progeny virions are assembled and released 
by the constitutive secretory pathway (Figure 2)[7,23].

The HCV mutation rate generates a high degree of  
intrahost genetic diversity[34], allowing for rapid adapta-
tion[35]. This characteristic molecular plasticity of  HCV is 
a key biological property that enables rearrangement of  
the intrahost viral population under different selection 
pressures, such as the immune response and antiviral 
therapy, warranting viral persistence[36,37]. HCV molecular 
evolution plays a pivotal role in virus transmission, pro-
gression of  disease and outcome of  therapy. Therefore, 
understanding the mechanisms driving the molecular 
evolution of  HCV is likely to help to implement mea-
sures aimed to control HCV-related disease.

geNeTIC heTeROgeNeITy AND 
MOleCUlAR evOlUTION
Viral genotypes
Seven major HCV genotypes and several subtypes have 
been identified (Figure 3)[38]. HCV exhibits a complex 
taxonomic structure[38]. Genetic diversity between HCV 
genotypes is about 30%, while subtypes differ by about 
15%[39,40]. HCV genotypes show a characteristic distribu-
tion in different geographical regions[41]. Genotypes 1, 
2 and 3 exhibit a worldwide distribution. Genotypes 1 
and 2 are endemic in West Africa while genotype 3 is en-
demic to the Indian subcontinent. Genotypes 4 and 5 are 
primarily found in Africa, and genotype 4 is particularly 
endemic in Egypt and Central Africa. Genotype 6 is en-
demic of  Asia whereas the distribution of  genotype 7 has 
not been fully assessed[41-45]. Genotype 2 is the oldest lin-
eage, followed by genotypes 3, 5 and 6, while genotypes 1 
and 4 emerged more recently. Globally distributed geno-
types are referred as epidemic, and their rapid dissemina-
tion over the last century is primarily attributed to modes 
of  transmission including the use of  intravenous drugs, 
nosocomial transmission and blood transfusions[46]. En-
demic genotypes are usually highly divergent and limited 
to well defined geographic regions[47]. These characteristic 
distribution patterns facilitate the identification of  the 
site of  origin and tracking of  the genetic history of  dif-
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ferent HCV lineages. In general, high degree of  genetic 
variability among HCV strains evolving in relatively small 
geographical regions suggests long-term evolution. Con-
versely, strains exhibiting lower genetic heterogeneity 
have shorter genetic histories and are often associated 
with recent introduction and higher transmission rates[47].

Molecular evolution
Different molecular mechanisms including mutation, 
genetic drift, recombination and natural selection shape 
the molecular evolution of  HCV.

Insertion of  point mutations by the RdRp is the pri-
mary element contributing to the high genetic variability 
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Figure 1  Hepatitis C virus genome and nucleotide variability. A schematic representation of the viral genome is depicted. The degree of nucleotide variability 
along the viral genome is also shown. The target molecules for anti-HCV therapy are noted, and the antiviral agents are indicated. A selection of FDA approved and 
in development compounds are shown. Roman numerals in brackets indicate the current clinical phase of development. HCV: Hepatitis C virus; FDA: Food and Drug 
Administration; PI: Protease inhibitors.



of  HCV. The HCV mutation rate in vivo is about 2.5 × 
10-5 per nucleotide per genome replication[48]; however, 
higher estimates have been obtained[49]. Selection de-
termines if  a given mutation would be fixed in the viral 
population. Extrinsic selective pressures, such as the 
host immune response and antiviral treatment, and in-
trinsic functional constraints determine the accumulation 
of  mutations in specific subgenomic regions[50]. These 
constraints define the tolerance to mutations in different 
regions resulting in an uneven distribution of  genetic 
variability along the genome (Figure 1)[51,52]. Despite the 
high degree of  genetic variability, the HCV antigenic 
diversity is significantly convergent[51], implying a large 
but restricted genetic space. This reduction in antigenic 
diversity is also likely due to structural and functional 
constrains[53] that restrict the sequence space and favors 
homoplasy[51]. The homoplastic nature of  HCV antige-
nicity contrasts with the extensive nucleotide variability 
and represents an important venue for vaccine develop-
ment[51].

Amino acid variability plays an important role in HCV 

infection. For instance, amino acid variability in the NS3/4 
protease coding region affects its catalytic efficiency[54], 
allowing HCV to explore a broad range of  protease ge-
netic configurations[55]. Interestingly, minor HCV variants 
can display improved catalytic activities when compared 
to the master sequence, including those bearing resistant 
mutations to antiviral drugs[55]. Thus, these functional dif-
ferences between variants can affect various aspects of  
the HCV replication cycle.

Genetic bottlenecks are an important force driving 
the molecular evolution and transmission of  HCV[56,57], 
by inflicting a strong selective pressure during the acute 
phase of  infection[57]. The intensity of  the selective pres-
sure imposed by genetic bottlenecks is such that only 
a handful of  HCV variants manage to establish infec-
tion[58,59], commonly resulting in a profound founder ef-
fect (Figure 4). Upon transmission, HCV nucleotide di-
versity is reduced by purifying selection and subsequent 
bottlenecks[57]. Interestingly, the antibody response does 
not seem to significantly affect the composition of  the 
transmitted/founder HCV population[58]. Rapid evolu-
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Figure 2  Hepatitis C virus replication cycle. The replicative cycle of HCV is displayed. HCV interaction with its cell receptors is shown. Upon entry, the HCV ge-
nome is released into the cytoplasm and subsequently translated and translocate into the RE. The membranous web is used as scaffold for viral replication. Interferon 
and TLR3 signaling pathways are disrupted by the HCV NS3/4A protease by cleaving MAVS and TRIF (upper right window). Assembled virions are released via the 
constitutive secretory pathway. HCV: Hepatitis C virus; MAVS: Mitochondrial antiviral signaling protein; TRIF: Toll-like receptor-domain-containing adapter-inducing 
interferon-β.
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tion after the occurrence of  genetic bottlenecks usually 
results in the emergence of  rare fit variants that quickly 
dominate the next population (Figure 4)[57,59].

Genetic drift is also a contributor to the molecular 
evolution of  HCV[60-62]. Genetic drift refers to the sto-
chastic fluctuations in frequencies of  variants in the viral 
population. Overall, large populations are less stochastic 
and undergo less genetic drift than small populations. 
While virus populations are often large, genetic drift still 
has been shown to be an important factor in viral evolu-
tion, suggesting that the genetic processes are mostly de-
terministic. Viral populations undergoing severe genetic 
bottleneck events frequently experience founder effects, 
which significantly reduce population size, allowing a 
small number of  variants to establish infection, favoring 
genetic drift. In HCV infection, the extent of  genetic 
drift is reduced as the time of  infection progresses[60-63]. 
This might be explained by the large population size 
frequently observed in chronically infected patients in 
comparison to acute cases. Additionally, occurrence of  
genetic drift might be affected by fluctuations in the vi-
ral load throughout the infection[64]. Anti-HCV therapy 
might also prompt genetic drift upon relapsing since 
viral populations are reduced considerably prior to rees-

tablishment as a result of  treatment failure.
Genetic recombination is another mechanism that 

participates in HCV genetic heterogeneity. Recombina-
tion generates genetic variability by rearranging genomic 
molecules during RNA elongation when the polymerase 
switches from donor to acceptor molecules, resulting in 
a nascent RNA with traits from both parental viruses[65]. 
HCV recombination also occurs via endoribonuclease 
digestion of  parental molecules within base-unpaired 
regions, followed by ligation[66]. For recombination to 
occur, co-infection or superinfection in the same cell 
by two parental viruses is required[67]. HCV genetic re-
combination is considered a rare event[68], and therefore, 
while co-infection is possible, it remains relatively infre-
quent. Superinfection exclusion during HCV infection 
has been reported[69-71]. Thus, simultaneous infection is 
feasible but sequential infection is severely impaired[72], 
suggesting that infected cells become refractory to suc-
ceeding infections; and therefore, limiting recombina-
tion. Nonetheless, naturally occurring inter-genotype, 
intra-genotype (inter-subtype) and intra-strain HCV 
recombinants have been reported[73-76]. HCV recombina-
tion has important clinical and epidemiological implica-
tions that affect molecular epidemiology, surveillance of  
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Figure 3  Hepatitis C virus genotypes and subtypes. Representative strains belonging to all seven genotype and all different subtypes are presented.



emergent new lineages and drug resistance strains[67].
HCV exists as an ensemble of  closely related but ge-

netically divergent variants, commonly referred as “qua-
sispecies”[77]. Nevertheless, the existence of  viral quasi-
species has been extensively debated[77-79]. In HCV mo-
lecular epidemiology, the term quasispecies has become 
a synonymous of  intrahost genetic variation[79]. Analysis 
of  the HCV intrahost genetic variation is important for 
genetic relatedness, drug resistance, molecular evolution 
and epidemiological studies[80,81]. Rapid[34,82], and slow[83,84] 
HCV divergence has been reported in different settings. 
Rapid divergence of  HCV represents an important chal-
lenge for genetic relatedness studies since molecular 
epidemiological links can be lost between related cases in 
relatively short periods of  time[34].

HCV molecular evolution involves a series of  com-
plex processes characterized by temporal variations that 
constantly reshape the architecture of  the viral popula-
tion[81,83,85,86]. HCV evolves in an specific staging fashion 
through incremental changes between communities and 
random mutations accompanied by fluctuation in the 
frequency of  coexisting viral subpopulations (Figure 4)[85]. 
In stage 1, HCV infection is established in the new host 
after occurrence of  the initial genetic bottleneck, result-
ing in a strong founder effect before the onset of  the 
adaptive immune response. Stage 2 is characterized by 
small incremental evolution steps through different com-

munities, due to selective pressures imposed by the im-
mune response. Stage 3 features a genetic diversification 
leading to the emergence of  new subpopulations owned 
to the decline of  previously dominant populations. In 
stage 4, HCV reaches settlement under strong negative 
selection[85]. These temporal variations are likely to affect 
HCV transmission since different viral variants are avail-
able at different time points during infection (Figure 4). 
The degree of  “transmissibility” may exhibit important 
differences among different viral variants; thus, deter-
mining the capacity of  each population to successfully 
establish infections in the new host[87]. This staging is 
also likely to play an important role in clinical outcome 
and assist in therapy management since viral populations 
may be differentially sensitive to treatment at particular 
stages[88].

Compartmentalization
While the liver is the main site for HCV replication, com-
partmentalization affecting other organs has been sug-
gested to occur in both, natural infections in humans and 
experimentally infected chimpanzees[81,89-93]. However, 
limited information on HCV variability in extrahepatic 
sites is available. Different HCV populations have been 
found in a variety of  tissues and cell types, suggesting 
the existence of  extrahepatic reservoirs[94-96]. The concept 
of  compartmentalization assumes that the distribution 
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of  viral variants in a non-random manner varies between 
tissues with an especific evolution rate for each compart-
ment[97,98]. Compartmentalization in the same organ has 
also been observed as nontumor and tumor hepatic cells 
exhibit different populations, and are likely subjected to 
different selective pressures[99]. Compartmentalization 
has been shown in immunocompromised[97,100], immuno-
competent[101], and transplanted individuals[102,103], further 
supporting its role in HCV persistence and pathogenesis.

Compartmentalization has also been proposed to 
play role in HCV molecular evolution[86]. In this evolu-
tionary model, co-existing lineages represent genetically 
distinct subpopulations of  infected liver cells (Figure 5). 
However, only one subset of  viral subpopulations com-
monly circulates in serum at any given time. This may be 
explained by the fluctuation of  neutralizing antibodies 
over time which in turn modify the relative frequency of  
lineages and differences in replication and shedding rates 
of  virus populations[86].

Different mutation patterns in the HCV 5’UTR have 
been reported to occur in compartmentalized popula-
tions. Importantly, minor nucleotide changes occurring 
in this region can directly affect HCV translation effi-
ciency. Thus, the effect of  mutations in the HCV IRES 
might be cell type dependent[93,104], resulting in different 
replication rates. Therefore, HCV compartmentaliza-
tion is not only determined by cell entry but also rep-
lication. NS5A and NS5B compartmentalized variants 
with different functional properties have also been ob-
served[105,106]. These findings highlight the importance of  
compartmentalization in functionality of  specific viral 
proteins.

Detection of  HCV negative RNA strands has been 
reported in peripheral blood mononuclear cells (PBMC), 
lymph nodes, bone narrow and brain. Genetic differ-
ences between plasma and PBMC HCV variants have 
been found to persist for long periods of  time[101,102,107]. 
Compartmentalization can be explained by the distribu-
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tion of  tissue specific receptor on different cell types[95]. 
Compartmentalization in PBMC is facilitated by high 
levels of  CD81 expression[108]. The existence of  HCV 
variants with different CD81 binding capacities has also 
been suggested[108]. Higher conservation in the CD81-2 
HCV binding region has been observed in PBMC-de-
rived variants in comparison to serum-derived strains[108]. 
Additionally, PBMC- associated HCV variants have also 
been detected after resolution of  HCV infection, sug-
gesting that compartmentalization can also play role 
in occult HCV infection[108]. In B cells, the interaction 
between E2 and CD81, as a result of  compartmental-
ization, leads to cell activation, which in turns protects 
lymphocytes from activation-induced cell death and 
regulates their function[94,109]. Therefore, E2-CD81 en-
gagement may contribute to HCV associated B cell lym-
phoproliferative disorders and insufficient neutralizing 
antibody production[109]. In human T lymphocytes, HCV 
infection is mediated by the CD5 receptor, a member of  
the scavenger receptor cysteine-rich family[110]. However, 
the factors determining lympho- and hepatotropism are 
not well known. While compartmentalization remains 
controversial[111-113], the potential implications in persis-
tence, cell tropism, drug resistance, and vaccine develop-
ment warrant further research[52].

vIRUS TRANSMISSION
HCV transmission primarily occurs via parenteral routes. 
Epidemic of  recreational injection drugs and unsafe 
injections resulted in a large number of  HCV infections 
during the 20th century[114,115]. Importantly, differences 
in transmission rates have resulted in distinctive HCV 
prevalence and genotype distribution worldwide[116-118].

HCV viral transmission is a dynamic process that has 
been subjected to significant changes during the last cen-
tury. Certain risk factors, such as use of  illegal intrave-
nous drugs (IDU) and risk behaviors among homosexual 
men, significantly facilitate virus transmission and create 
optimal conditions for rapid HCV molecular evolu-
tion[34]. The modes of  transmission in a given epidemio-
logical settings affect the intra and interhost genetic vari-
ability within the transmission network[34,83,119]. In high 
risk population groups, higher transmission rates occur 
among acute cases leading to spread of  more infectious 
variants[87]. However, the patterns of  HCV transmission 
can change over time[120], and this in turn affects HCV 
transmissibility.

HCV transmission networks are difficult to identify 
for several reasons. The long incubation period makes it 
difficult to link related cases to a common source of  in-
fection[34]. Additionally, acute HCV infections are usually 
asymptomatic, making identification of  cases challeng-
ing[121]. The lack of  laboratory methods and appropriate 
molecular surveillance systems capable of  distinguishing 
acute from chronic infections further complicates identi-
fication of  incident cases[122]. Recognition of  HCV trans-
mission is of  critical importance in implementing mea-

sures aimed to prevent virus spread. Transmissions of  
fast evolving viruses, such as HCV, are difficult to trace 
since strains from epidemiological linked cases are geneti-
cally related but rarely identical. Thus, interpretation of  
viral phylogenies is inherently uncertain and should be 
used cautiously[123]. Phylogenetic branching not always 
correspond to directly linked transmission events, and 
available sequences may not represent all individuals be-
longing to the transmission network. In consequence, lo-
cal epidemic sequences can group together in the absence 
of  direct transmission[123], and therefore, phylogenetic 
linkage among strains cannot show, beyond any doubt, 
direct transmission between possibly linked cases, despite 
of  inclusion of  local unrelated controls[124]. However, lo-
cal control sequences do help in those instances where 
direct transmission did not occur by showing sufficient 
phylogenetic separation between suspected cases[124,125]. 
Hence, proper epidemiological investigations should be 
performed in conjunction to adequately assess relatedness 
between HCV cases. Additionally, in high risk groups re-
infection with closely related strains may preclude the use 
of  paraphyletic clustering to relate cases[124].

Estimating the time of  infection based purely on ge-
netic data has been reported by using evolutionary mo-
lecular clock models[125-127]. However, confidence limits 
associated with molecular clock estimates can vary sig-
nificantly, making interpretation difficult. Different fac-
tors can affect the accuracy and reliability of  estimates 
of  molecular divergence including sampling, temporal 
and anatomical distribution of  sampling, genome re-
gion sequenced, super- or re-infection, and evolutionary 
models and algorithms used[124]. Thus, interpretation and 
reliability of  such approaches requires further validation.

HCV evolution is also affected by other instances 
such as co-infection with other viruses or pregnancy[35]. 
This might be associated with the implicit alteration of  
the immune response in the mother. During pregnancy, 
viral levels are commonly increased and CD8+ T cell 
cytotoxicity reduced along with loss of  HLA escape 
mutants, with the consequently emergence of  enhanced 
fitness strains, and further reversion during the inter-
pregnancy periods[102]. Thus, maternal cellular immunity 
impairment and emergence of  more fit viruses might 
facilitate HCV perinatal transmission. Compartmental-
ization of  HCV in PBMC has been proposed to play 
role in perinatal transmission, acting as Trojan horses for 
viral entry[128,129]. Moreover, PBMC-infected cells have 
been shown to be a risk factor for HCV vertical trans-
mission[130,131]. In this setting, children infected perinatally 
bear infection with more fit viruses[101,132]. Transmission 
of  more fit wild-type or revertant viruses could favor 
persistent infection in infants[128].

Tracking of  HCV infection depends on sequence in-
formation originated from different subgenomic regions. 
The 5’-UTR region has been widely used for detection 
owned to its degree of  conservation across genotypes 
while the NS5B region is the target of  election for HCV 
genotyping[133,134]. However, these two regions do not 
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contain sufficient sequence information to establish 
genetic relatedness between clinical isolates. Genetic re-
latedness studies primarily rely on information obtained 
from the HVR1[34,81,83,119]. Importantly, the rapid diver-
gence in this region represents a challenge for molecular 
epidemiological studies, which can lead to loss of  genetic 
links between related isolates[34]. Sequencing of  multiple 
and longer subgenomic regions has been proposed as 
an alternative to overcome the limitations imposed by 
the rapid molecular evolution of  HCV[34]. The NS5A 
has also been used to establish relatedness among HCV 
cases[85], which can aid to restore links between isolates 
owned to a lower nucleotide substitution rate. Despite 
the usefulness of  different subgenomic regions for the 
characterization of  clinical isolates, whole genome se-
quencing should be the ultimate goal for HCV molecular 
characterization.

The selective forces that shape the HCV molecular 
evolution are complex in nature and required sophisti-
cated methods to be assessed. Until recently, molecular 
approaches used to detect low frequencies variants and 
assess the intrahost viral genetic variation, such as stan-
dard cloning techniques[57], limiting dilution[135] and single 
genome amplification[59], were cumbersome, time-con-
suming, and expensive[136]. Moreover, these conventional 
methods are difficult to implement and provide limited 
insights in the composition of  the intrahost popula-
tion[133]. The relatively recent advent of  next generation 
sequencing (NGS) platforms has allowed the detection 
of  rare variants present at much lower frequencies[136-139], 
facilitating the characterization of  the HCV intrahost 
viral population in remarkable detail[136,140,141].

DISeASe pROgReSSION
HCV molecular evolution is intimately associated with 
disease outcome and progression[142,143]. HCV-related liver 
disease gradually advances from chronic hepatitis to liver 
cirrhosis and to hepatocellular carcinoma HCC[144]. The 
rate of  disease progression differs considerably among 
HCV cases, and the cause for these differences remains 
poorly understood. However, viral genotypes have been 
associated with pathogenesis of  HCV-related infec-
tion, in addition to dictating the path of  treatment[145]. 
Impairment of  different pathways has also been associ-
ated with the infecting genotypes, which in turns leads 
to distinct pathological settings. Overall, HCV genotype 
1 is associated with more aggressive disease, increased 
insulin resistance, poor response to therapy, higher risk 
of  cirrhosis and hepatocellular carcinoma development, 
while genotype 3 is associated with increased steatosis 
and fibrosis[145,146]. Thus, the identification and character-
ization of  HCV types and subtypes provides insight into 
the different outcome of  HCV infection and responsive-
ness to therapy[145].

HCV core has been associated with disease progres-
sion by inducing apoptosis through the extrinsic and 
intrinsic pathways[147]. The signaling pathway converges 

into a common apoptotic pathway where the caspase 
enzyme cascade is triggered. As a consequence, intracel-
lular components and DNA are degraded, leading to cells 
death and ultimately causing liver damage[148]. Apoptosis 
of  liver cells plays an important role in the pathogen-
esis of  end stage liver disease[149]. Interestingly, HCV 
core induces both pro- and anti-apoptotic effects[150-154]. 
HCV suppresses apoptosis by preventing the release of  
cytochrome C in the mitochondria, resulting in inactiva-
tion of  caspase-9, -3 and -7[155]. When HCV core binds 
to the downstream death domain of  the Fas-associated 
death domain (FADD) protein and FLICE (FADD-
like interleukin-1beta-converting enzyme)-like inhibitory 
protein (c-FLIP) results in anti-apoptotic state[156]. HCV 
core also binds to p53 resulting in either inhibition or 
activation of  apoptosis[157,158]. This dual behavior of  HCV 
core in regulation of  apoptosis is of  the utmost impor-
tance in progression to hepatocellular carcinoma (HCC). 
The association between different amino acid residues 
in the HCV core region and disease progression has 
been reported[159]. Particularly, amino acid 70 in the HCV 
core has been closely associated with progression to 
HCC[160-163]. A detailed analysis of  the quasispecies nature 
of  the HCV core region showed that mutants bearing 
this residue is linked to advance of  liver disease. Sequence 
variations in the core region have also been reported in 
tumor cells[164]. Analyses of  the full-length of  the core 
gene from patients with HCC showed that mutations in 
the core protein may affect the course of  HCV infec-
tion[165-168]. HCV infection is associated with an increased 
risk of  developing diabetes mellitus[169,170]. Additionally, 
amino acid substitutions in the HCV core from genotype 
1b isolates have been suggested as predictor markers for 
insulin resistance in diabetic patients without signs of  
cirrhosis[171]. Isolates from patients with severe insulin 
resistance bear higher proportions of  Glu70 (His70) 
and/or Met91. Therefore, genetic variability occurring in 
the HCV core is likely to affect its interaction with host 
proteins and thereby disease progression.

Steatosis is commonly observed in HCV cases and 
contributes to progressive hepatic injury. Development 
of  hepatocellular steatosis is more frequently observed 
in cases infected with HCV genotype 3[172,173]. However, 
not all patients infected with genotype 3 develop steato-
sis[174]. Therefore, infection with genotype 3 is only one 
of  the elements in the multi factorial nature of  steatosis. 
Other studies have also implicated HCV genotype 3 in 
rapid progression to fibrosis[175], further supporting the 
role of  genotyping in disease progression.

The complexity of  the viral population in the NS5A 
region has been shown to be associated with HCC[176]. 
However, the specific mechanisms by which NS5A 
promotes disease progression are not understood. The 
NS5A inhibits the activated protein kinase (PKR), an im-
portant mediator of  the IFN anti-viral response, apop-
tosis and cell proliferation[177-179], which can lead to liver 
damage. Additionally, NS5A can act as transcriptional 
activators affecting cellular signaling[180]. The NS5A en-
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compasses the interferon-sensitivity determining region 
(ISDR) which is associated with response to antiviral 
therapy[181]. Thus, the NS5A interaction with host pro-
teins is pleiotropic in nature, making difficult the charac-
terization of  the participant elements in pathogenesis.

In individuals progressing to end-stage liver disease, 
complexity of  the quasispecies population at baseline is 
greater and tends to reduce over time, while non-pro-
gressors course with gradual increase in complexity[182]. 
Patients progressing to end stage liver disease, who 
likely exert less immune pressure on the HCV popula-
tion, exhibit reduction in the complexity of  the viral 
population[182]. High genetic complexity of  the intrahost 
HCV population and liver injury has also been observed 
in immune-competent children associated with verti-
cal transmission in comparison to immune-suppressed 
patients[183]. The dynamics of  the HCV quasispecies are 
also associated with progression to fibrosis after liver 
transplantation[184-187]. Recurrence of  HCV infection is 
universal after transplantation; however, clinical outcome 
is variable[188,189]. Several factors affect the outcome of  
recurrent HCV disease upon transplantation including 
HCV genotype[190,191], virus load[192], and co-infection 
with cytomegalovirus[193,194]. Co-infection with human 
immunodeficiency (HIV) virus has also been associated 
with progression to severe liver disease[195]. Co-infected 
patients with unfavorable prognosis are presented with 
a relatively stable quasispecies population which can be 
a reflection of  the limited immune pressure commonly 
observed in these patients[184].

MOleCUlAR ASpeCTS Of TheRApy 
AND DRUg ReSISTANCe
The “ideal” outcome of  the anti-HCV treatment is a 
sustained virologic response (SVR), defined as unde-
tectable viral RNA for six months after completion of  
treatment[196]. Until recently, the only option for HCV 
therapy was a combination of  pegylated interferon-α 
(PEG-IFNα) and ribavirin (RBV). The efficacy of  this 
regime ranged between 20%-80%, depending on race, 
disease stage, infecting genotype and distinct single 
nucleotide polymorphisms (SNP) located in the IFN-λ3 
promoter gene[197,198]. Poor outcome was the common 
feature among patients infected with HCV genotype 1 
undergoing IFNα-RBV therapy[196]; thus, the infecting 
genotype was an important determinant for response to 
treatment[199]. Therefore, efforts aimed to find predic-
tive markers for SVR were pursued by several groups. 
Besides infecting genotype and viral titer, other viral 
molecular factors used to predict IFN therapy outcome 
rendered controversial results. For instance, the 39 ami-
no acids located in the interferon sensitivity determining 
region (ISDR) in the N5A gene were proposed to be 
predictive of  SVR[181,200,201]. Thus, four or more substitu-
tions in this small region correlated with responsiveness 
in Asian patients infected with HCV genotype 1b. How-
ever, the association between ISDR and SVR in other 

races rendered controversial results[202,203].
Major advances in the anti-HCV therapy have been 

made during the past few years[204]. This has resulted in 
significant improvement in SVR. The landscape of  treat-
ments for HCV is expected to change drastically with 
more efficient IFN-free antiviral therapies being approved 
in the near future[205]. Insights into the molecular structure 
of  different HCV proteins have greatly fostered the de-
velopment of  new drugs, commonly referred as direct-
acting antiviral agents (DAA). Experience with anti-
retrovirals has provided a valuable framework for the 
development of  DAA against HCV. In theory, every 
step of  the HCV replication cycle is a potential target 
for antiviral therapy; however, good results with HIV 
protease inhibitors suggested the HCV protease as an 
ideal candidate. Nonetheless, both NS3 and NS5B have 
been targets for anti-HCV therapy; with two-thirds of  
drugs directed against these proteins currently in Phase 
Ⅱ and Ⅲ trials, and few already approved by the United 
States Food and Drug Administration (FDA). In addi-
tion, DAA directed to the NS5A protein have also been 
developed (Figure 1, Table 1).

HCV NS3 protease inhibitors
From a chemical point of  view, HCV NS3/4A protease 
inhibitors can be divided into three main categories: 
(1) linear peptidomimetics with an alpha-ketoamide 
group that binds the active site, covalently blocking the 
enzymatic activity (first class); (2) linear non-covalent 
peptidomimetic inhibitors (second class); and (3) mac-
rocyclic non-covalent peptidomimetic inhibitors (third 
class)[206,207].

In May 2011, telaprevir and boceprevir, both belong-
ing to the first class of  protease inhibitors, were approved 
by the FDA for treatment of  patients chronically infect-
ed with HCV genotype 1. In large Phase Ⅲ studies, SVR 
rates of  67%-75% among treatment-naive and 59%-64% 
in treatment-experienced patients were achieved with tri-
ple regimens (PEG-IFNα, RBV plus either telaprevir or 
boceprevir) in comparison to the standard therapy with 
IFNα/RBV[109,208-210]. SVR rates depend on the patient 
previous response to dual therapy and fibrosis stage[211], 
being considerably lower in patients with null response 
and liver cirrhosis[210,212]. Additionally, these drugs still re-
quire the leading phase with IFNα/RBV; and therefore, 
are prone to develop drug resistance[207]. Two features 
contribute to this observation: (1) the low-fidelity of  the 
HCV RdRp and large progeny generated per day; and 
(2) the complex structure of  the HCV protease active 
site. The estimated error rate of  the HCV RpRd is about 
10-fold higher than the HIV reverse transcriptase[213], 
and the virion production rate about 100-fold higher, 
originating resistant mutants as minor populations in 
treatment naïve patients[133,214,215]. While some studies 
have reported frequencies of  HCV resistance mutants < 
1%[133,214,215], others have shown higher proportions[216]. 
These resistant associated variants (RAV) can rapidly 
emerge and come to prominence after few days of  treat-
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Table 1  Amino acid substitutions within the direct-acting antiviral agents target associated with resistance to different direct-acting 
antiviral agents agents

ment and are responsible for treatment failure in many 
patients[217-219].

Boceprevir and telaprevir share extensive cross-re-
sistance. RAV most frequently associated with telaprevir 
monotherapy include R155K, A156S/T/V, V36M, and 
T54A/S (Table 1). Similar variants are observed with bo-
ceprevir monotherapy, in addition to V170A and V55A 
(Table 1). Similar profiles of  resistance in vitro have been 
observed for each substitution resulting in low-to-moder-
ate resistance for V36M, T54A/S, V55A, R155K, A156S, 
and V170A, and high resistance for A156T/V and dou-
ble mutants R155K/V36M[218,220]. Substitutions associated 
with resistance to protease inhibitors generally reduce the 
catalytic efficiency of  the HCV protease. For this reason, 
these mutants are rarely detected as the dominant variant 
in the intrahost HCV population in the absence of  the 
antiviral drug. Recent studies have shown that non-re-
sponders to protease inhibitors carried a dominant strain 
of  RAV at the time of  virus breakthrough or relapse, 
but the wild-type strain re-emerged as the dominant vari-
ant after completion of  therapy[221,222]. RAV have been 
reported for most antiviral agents in development, with 
widespread cross-resistance for both linear and macro-
cyclic groups[218,223]. For example, certain substitutions 
involving residues such as R155 as well as R155/A156 
often confer resistance against most protease inhibitors 
at a moderate fitness cost to the virus. Thus, in the ab-
sence of  antiviral drugs, RAV replicate with moderate 
efficiency compared to wild-type viruses[222,224].

Telaprevir and boceprevir have restricted spectrum 
of  action over HCV genotypes. While telaprevir has 
some clinical effect against genotype 2, and boceprevir 
seems to be effective against genotype 3, their use is pre-
scribed off-label for these genotypes[223]. Drug resistance 
to protease inhibitors displays a low genetic barrier (i.e., 
the number of  nucleotide changes required to generate 
RAV) which represents a particular problem in HCV 

subgenotype 1a infection, as the genetic barrier is lower 
compared to subgenotype 1b[225].

Second and third classes of  NS3 protease inhibitors, 
which do not form covalent bounds with their targets, 
have several advantages over the first-class compounds[226]. 
These NS3 protease inhibitors include linear non-covalent 
molecules such as faldaprevir, asunaprevir, sovaprevir, 
GS-9451 and macrocyclic inhibitors such as simepre-
vir, danoprevir, ABT-450, GS-9256; and vaniprevir 
(Table 1)[207,227-234]. Most of  these new DAA are currently 
in Phase Ⅱ or Ⅲ clinical trials with the exception of  
simeprevir which has been already approved by FDA. 
These antiviral agents have showed high rates of  SVR, 
comparable or higher than boceprevir or telaprevir triple-
combination regimens, in HCV genotype 1 patients when 
used in combination with PEG-IFN and RBV. These 
NS3 HCV protease inhibitors tend to have a broader 
spectrum of  action over different HCV genotypes; how-
ever, these DAA are not pangenotypic antivirals owned 
to different inhibitory efficacies across genotypes[227,235,236]. 
Simeprevir exhibits high antiviral activity against geno-
types 2, 4, 5, and 6 whereas no effect has been observed 
with genotype 3[236]. First class protease inhibitors genetic 
barrier is low and extensive cross-resistance in compari-
son to second and third class protease inhibitors[218]. In 
particular, mutations R155K/T/Q have been shown to 
confer broad cross-resistance while mutations D168/E/
G/H/T/Y confer resistance specifically to non-covalent 
peptidomimetic inhibitors, regardless of  linear or mac-
rocyclic structure[218,233,237-239]. Notably, D168 is one of  
the few active site residues not entirely conserved among 
HCV genotypes, which is replaced by glutamine in iso-
lates belonging to genotype 3, partly explaining why HCV 
genotype 3 is “naturally resistant”[240]. Moreover, substi-
tution Q80K is present in about 20% of  genotype 1a 
sequences and confers resistance to Simeprevir[237]. This 
mutant has been associated with breakthrough infection 
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Drug target DAA agents RAV

NS3/4A protease
Telaprevir V36M/A, T54A/S, R155K/T, A156S/T/V
Boceprevir V36M/A, T54A/S, V55A, R155K/T, A156S/T/V, V��8I, V�70A, M�7�L
Faldaprevir R155K, A���T/V, D168V/E
Simeprevir V3�M, F43S, Q80K, S�22A/R, R155K, A���T/V, D168V/E, I�70T

ABT-4�0 V3�M/A/G, V��I, R155K, A���T/V, D168A/V
Danoprevir V3�M/A, V��I, R155K, D168E/T
Vaniprevir R155G/K/N/S/T, A���V, D168V/G/A

NS�B polymerase
Mericitabine S282T, L��9F, L320F

BI 207�27 P495L/S/A/T/Q, P49�S, V499A
Lomibuvir/VX-222 L419S, R422K, M423TV

Setrobuvir M4�4T/L, G��4D, D��9G
NS�A

Daclatasvir M28V/A/T, Q30R/E/H, L31V/M, Q�4H/N/Y, H�8D, Q�2R/E, A92K/T, Y93H/N/C

Bolded type under the amino acid position number represents the key mutations that are clearly associated with virologic failure. A: Alanine; C: Cysteine; D: 
Aspartate; E: Glutamate; F: Phenylalanine; G: Glycine; H: Histidine; L: Leucine; I: Isoleucine; K: Lysine; M: Methionine; N: Asparagine; P: Proline; Q: Gluta-
mine; R: Arginine; S: Serine; T: Threonine; V: Valine; Y: Tyrosine; DAA: Direct-acting antiviral agents; RAV: Resistant associated variants.



in treatment-naïve subjects[220].

NS5B polymerase inhibitors
Another strategy to inhibit viral replication is the devel-
opment of  polymerase inhibitors which interfere with 
viral replication by binding to the NS5B RdRp. NS5B 
inhibitors can be divided into two distinct categories: 
nucleosides inhibitors and non- nucleoside inhibitors.

Nucleoside analogue inhibitors mimic the natural 
substrates of  the polymerase causing direct chain ter-
mination[241,242]. The NS5B active site is well-conserved 
across HCV genotypes as amino acid substitutions in 
this location are generally poorly tolerated and result in 
remarkable loss of  fitness[223,243]. Among nucleoside ana-
logue, mericitabine has been shown to increase SVR rates 
in patients infected with genotype 1 and 4[244]. Sofosbuvir, 
recently approved by the FDA, has demonstrated extraor-
dinary efficacy for treatment of  adults infected with gen-
otypes 1 and 4 in combination with IFN/RBV, and for 
the treatment of  adults infected with genotypes 2 and 3 
in IFN-free regimens[106,245,246]. Importantly, several factors 
usually associated with poor outcomes in HCV infected 
patients had no effect on the efficacy of  sofosbuvir; 
thus, only male gender and the presence of  cirrhosis are 
predictive of  unfavorable outcome. Substitution S282T 
conferring resistance to sofosbuvir has been observed in 
vitro but not in vivo[223]. However, mutants L159F/L320F 
in the NS5B polymerase conferring low-level resistance 
to mericitabine and sofosbuvir has been reported recent-
ly[223,247]. Overall, nucleoside polymerase inhibitors tend to 
exhibit good activity against a broad range of  genotypes 
and have a high genetic barrier to resistance which makes 
them a promising class of  anti-HCV agents.

Non-nucleoside inhibitors are chemically and func-
tionally much more diverse than nucleoside inhibitors. 
Non-nucleoside inhibitors usually bind to several discrete 
sites on the HCV polymerase, which results in conforma-
tional protein changes before the elongation complex is 
formed[241,242]. A limitation of  this mechanism of  action 
is that binding sites are less conserved among genotypes 
compared to the active site. As a consequence, lower 
cross-genotypic activity and higher probability of  RAV 
development is observed. Despite efficacy against HCV 
genotype 1, resistance occurs at a low fitness cost[218].

Several non-nucleoside inhibitors targeting at least 
four distinct allosteric binding sites are in develop-
ment. Two of  these binding sites, named “thumb Ⅰ” 
and “thumb Ⅱ”, are located on the polymerase thumb 
domain, whereas the other two sites, “palm Ⅰ” and 
“palm Ⅱ” are close to the active site cavity and involve 
primarily amino acids from the palm domain. Certain 
non-nucleoside inhibitors develop drug resistant vari-
ants carrying mutations at different positions, e.g., BI 
207127 targeting thumb Ⅰ at P495, P496 and V499; lo-
mibuvir targeting thumb Ⅱ at L419, R422 and M423 as 
well as setrobuvir affecting palm Ⅰ at M411, G554 and 
D559[220].

NS5A inhibitors
Disruption of  the recruiting capabilities of  NS5A can 
also be targeted for antiviral drug development. Recently, 
identification of  lead compounds capable of  induc-
ing a rapid decline in viral load and emergence of  RAV, 
characterized by amino acid substitutions located in the 
NS5A protein, confirmed their specificity[248,249]. These 
agents feature broadly genotypic coverage but low ge-
netic barrier to resistance[207,250].

Daclatasvir is a replication complex inhibitor cur-
rently in Phase Ⅲ. Daclatasvir is active at picomolar con-
centrations in vitro displaying activity over a broad range 
of  HCV genotypes[249,251]. The resistance profile of  da-
clatasvir has been linked to the N-terminus of  NS5A[249]. 
The most remarkable RAV associated to daclatasvir are 
Y93H/C/N, which also confer cross-resistance to other 
NS5A inhibitors[249]. Interestingly, Y93 is found near the 
protein dimer interface, leading to speculate that NS5A 
inhibitors might affect the monomer/dimer equilib-
rium[252]. Monotherapy with these drugs rapidly selects 
for the outgrowth of  resistant variants, similar to other 
HCV protease inhibitors[220,251,253,254].

Interferon-free therapy regimens
IFN-free combination trials are ongoing with differ-
ent DAA. The current challenge is the development of  
an oral regimen including compounds with different 
mechanisms of  action, synergistic interactions and pan-
genotypic activity. Drugs in an IFN-free therapy should 
not display overlapping resistance profiles. In principle, 
this is achievable since most DAA target different viral 
proteins or binding sites in the same protein. Several 
DAA are expected to successfully complete phase Ⅲ tri-
als in anticipation of  licensing. Initially, different IFN-
based regimens (sofosbuvir, faldaprevir and simeprevir) 
will be readily available for treatment of  HCV genotype 
1. In the near future, combination of  antiviral agents 
lacking cross-resistance with good safety profile will be 
the new recommended therapy regime. Recent clinical 
studies have shown SVR > 90% in patients administered 
with DAA cocktails including protease and polymerase 
inhibitor[207]. For example, Sofosbuvir is currently being 
evaluated in IFN-free combinations with simeprevir and 
daclatasvir. In turn daclatasvir efficacy is being assessed 
in combination with asunaprevir and/or non-nucleoside 
polymerase inhibitor BMS791325[207,255].

The rapid development of  DAA has broadened the 
landscape of  anti-HCV drugs which will probably include 
extensive number of  possible ingredients for an effective 
combinatory regimen. Results from recent clinical trials 
have firmly established the concept that a permanent 
cure can be achieved with IFN-free combinations of  
DAA[96,256].

CONClUSION
HCV molecular evolution in many ways dictates virus 
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transmission, progression to severe liver disease and 
therapy outcome. The molecular mechanisms exploited 
by the virus to achieve persistence are numerous and 
complex in nature. The sophisticated evolutionary pro-
cess to which HCV is subjected during transmission 
and upon infection further limits our understanding of  
the participating elements of  HCV pathogenesis. The 
remarkable HCV mutation rate represents a challenging 
task for vaccine development and molecular epidemiol-
ogy. In this new era of  advance sequencing technologies, 
the implementation of  enhanced molecular surveillance 
is of  the utmost importance to accurately monitor circu-
lation of  viral strains. Comprehensive molecular studies 
are also required to uncover the participant elements 
responsible for virulence.

The rapidly evolving field of  DAA is heading to the 
development of  IFN-free regimens with superior SVR 
and pangenotypic activity and less prone to side effects. 
However, emergence of  RAV remains an important con-
cern. Importantly, and despite the emergence of  HCV 
RAV, which are frequently developed upon anti-HCV 
treatment, high SVR rates are attainable. Detection of  
minor variants should be conducted before and during 
treatment with new drugs to monitor development of  
resistance and better manage patients.

The major advances on therapy have been the results 
of  many efforts focused on discovering the nuances as-
sociated with HCV replication. However, the develop-
ment of  successful vaccines imposed a more daunting 
task. Thus, the path to HCV vaccination should be as 
exciting, if  not more, than the road to efficacious treat-
ment.
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