10 research outputs found

    Disorders of sex development : insights from targeted gene sequencing of a large international patient cohort

    Get PDF
    Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. Results: We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46, XY DSD and 48 with 46, XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46, XY DSD. In patients with 46, XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. Conclusions: Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    OTX2 duplications: a recurrent cause of oculo-auriculo-vertebral spectrum

    No full text
    International audienceBackground Oculo-auriculo-vertebral spectrum (OAVS) is the second most common cause of head and neck malformations in children after orofacial clefts. OAVS is clinically heterogeneous and characterised by a broad range of clinical features including ear anomalies with or without hearing loss, hemifacial microsomia, orofacial clefts, ocular defects and vertebral abnormalities. Various genetic causes were associated with OAVS and copy number variations represent a recurrent cause of OAVS, but the responsible gene often remains elusive. Methods We described an international cohort of 17 patients, including 10 probands and 7 affected relatives, presenting with OAVS and carrying a 14q22.3 microduplication detected using chromosomal microarray analysis. For each patient, clinical data were collected using a detailed questionnaire addressed to the referring clinicians. We subsequently studied the effects of OTX2 overexpression in a zebrafish model. Results We defined a 272 kb minimal common region that only overlaps with the OTX2 gene. Head and face defects with a predominance of ear malformations were present in 100% of patients. The variability in expressivity was significant, ranging from simple chondromas to severe microtia, even between intrafamilial cases. Heterologous overexpression of OTX2 in zebrafish embryos showed significant effects on early development with alterations in craniofacial development. Conclusions Our results indicate that proper OTX2 dosage seems to be critical for the normal development of the first and second branchial arches. Overall, we demonstrated that OTX2 genomic duplications are a recurrent cause of OAVS marked by auricular malformations of variable severity

    Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort

    No full text
    Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. Results: We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46,XY DSD and 48 with 46,XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46,XY DSD. In patients with 46,XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. Conclusions: Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes

    Additional file 2: Figure S1. of Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort

    No full text
    DSD gene variants in different global regions. DSD gene variants among the international cohort of 46,XY DSD patients. For ease of analysis, countries were grouped together into regions: Asia comprises Indonesia (97), Pakistan (25), Vietnam (35), Cambodia (16), India (1), a total of 174 patients ; Europe comprises the Netherlands (38), Austria (15), Belgium (6), and Italy (2), a total of 61 patients; and AUS & NZL comprises Australia (83) and New Zealand (7), a total of 90 patients. All curated variants are shown; those which have been curated and called pathogenic, likely pathogenic, and VUS. In the cohort from Asia, 35% of the patients were found to have a diagnostic variant (pathogenic or likely pathogenic), while this was 44% for Europe and 45% for AUS/NZL. Two patients from Canada were not included in the diagram. (PPTX 158 kb

    Disorders of sex development: Insights from targeted gene sequencing of a large international patient cohort

    Get PDF
    Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively

    Additional file 1: Table S1. of Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort

    No full text
    DSD gene variants. Each variant found in a diagnostic gene (after the filtering and curation process) is shown. In some cases where the gene is inherited in an autosomal recessive manner, two variants are grouped together. Inheritance has been indicated where familial samples were available: negative indicates negative for variant and N/A sample not available. De novo events have only been noted where both parental samples were available and found to be negative for the change. Previously reported refers to a variant being described in either ClinVar, HGMD, or a publication in a peer-reviewed journal via a PubMed search. Variants were classified consistent with previous MPS publications of DSD cohorts [8, 10] which were based on ACMG guidelines [15]. VUS were called for three reasons: 1 = fits phenotype but predicted to be benign; 2 = damaging but doesn’t fit phenotype; or 3 = variant in the AR repetitive region. Patients marked with an asterisk were identified to have two or more diagnostic gene variants. Null variants (frameshifts, splice sites mutations, and premature stop codons) are shown in bold. Patients have been classified based on clinical notes provided, according to the recommended classification of DSD in the Chicago consensus report. Classifications: CGD complete gonadal dysgenesis, DASA disorders of androgen synthesis or action, DSD DSD of “unknown” origin; hypospadias, LCH Leydig cell hypoplasia, OT ovotesticular DSD, PGD partial gonadal dysgenesis, PMDS persistent Müllerian duct syndrome; syndromic, T testicular DSD. Related affected individuals are indicated. File is in Excel spreadsheet format. (XLSX 47 kb

    Additional file 1: Table S1. of Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort

    No full text
    DSD gene variants. Each variant found in a diagnostic gene (after the filtering and curation process) is shown. In some cases where the gene is inherited in an autosomal recessive manner, two variants are grouped together. Inheritance has been indicated where familial samples were available: negative indicates negative for variant and N/A sample not available. De novo events have only been noted where both parental samples were available and found to be negative for the change. Previously reported refers to a variant being described in either ClinVar, HGMD, or a publication in a peer-reviewed journal via a PubMed search. Variants were classified consistent with previous MPS publications of DSD cohorts [8, 10] which were based on ACMG guidelines [15]. VUS were called for three reasons: 1 = fits phenotype but predicted to be benign; 2 = damaging but doesn’t fit phenotype; or 3 = variant in the AR repetitive region. Patients marked with an asterisk were identified to have two or more diagnostic gene variants. Null variants (frameshifts, splice sites mutations, and premature stop codons) are shown in bold. Patients have been classified based on clinical notes provided, according to the recommended classification of DSD in the Chicago consensus report. Classifications: CGD complete gonadal dysgenesis, DASA disorders of androgen synthesis or action, DSD DSD of “unknown” origin; hypospadias, LCH Leydig cell hypoplasia, OT ovotesticular DSD, PGD partial gonadal dysgenesis, PMDS persistent Müllerian duct syndrome; syndromic, T testicular DSD. Related affected individuals are indicated. File is in Excel spreadsheet format. (XLSX 47 kb

    Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort

    No full text
    corecore