7 research outputs found

    A transit timing variation observed for the long-period extremely low density exoplanet HIP 41378f

    Get PDF
    HIP 41378 f is a temperate 9.2 ± 0.1 R⊕ planet with period of 542.08 d and an extremely low density of 0.09 ± 0.02 g cm−3. It transits the bright star HIP 41378 (V = 8.93), making it an exciting target for atmospheric characterization including transmission spectroscopy. HIP 41378 was monitored photometrically between the dates of 2019 November 19 and 28. We detected a transit of HIP 41378 f with NGTS, just the third transit ever detected for this planet, which confirms the orbital period. This is also the first ground-based detection of a transit of HIP 41378 f. Additional ground-based photometry was also obtained and used to constrain the time of the transit. The transit was measured to occur 1.50 h earlier than predicted. We use an analytic transit timing variation (TTV) model to show the observed TTV can be explained by interactions between HIP 41378 e and HIP 41378 f. Using our TTV model, we predict the epochs of future transits of HIP 41378 f, with derived transit centres of TC, 4 = 2459355.087+0.031−0.022 (2021 May) and TC, 5 = 2459897.078+0.114−0.060 (2022 November)

    Mass determinations of the three mini-Neptunes transiting TOI-125

    No full text
    The Transiting Exoplanet Survey Satellite, TESS, is currently carrying out an all-sky search for small planets transiting bright stars. In the first year of the TESS survey, a steady progress was made in achieving the mission's primary science goal of establishing bulk densities for 50 planets smaller than Neptune. During that year, the TESS's observations were focused on the southern ecliptic hemisphere, resulting in the discovery of three mini-Neptunes orbiting the star TOI-125, a V = 11.0 K0 dwarf. We present intensive HARPS radial velocity observations, yielding precise mass measurements for TOI-125b, TOI-125c, and TOI-125d. TOI-125b has an orbital period of 4.65 d, a radius of 2.726 ± 0.075 RE, a mass of 9.50 ± 0.88 ME, and is near the 2:1 mean motion resonance with TOI-125c at 9.15 d. TOI-125c has a similar radius of 2.759 ± 0.10 RE and a mass of 6.63 ± 0.99 ME, being the puffiest of the three planets. TOI-125d has an orbital period of 19.98 d and a radius of 2.93 ± 0.17 RE and mass 13.6 ± 1.2 ME. For TOI-125b and d, we find unusual high eccentricities of 0.19 ± 0.04 and 0.17^{+0.08}_{-0.06}, respectively. Our analysis also provides upper mass limits for the two low-SNR planet candidates in the system; for TOI-125.04 (RP = 1.36 RE, P = 0.53 d), we find a 2¿ upper mass limit of 1.6 ME, whereas TOI-125.05 (R_P=4.2^{+2.4}_{-1.4} RE, P = 13.28 d) is unlikely a viable planet candidate with an upper mass limit of 2.7 ME. We discuss the internal structure of the three confirmed planets, as well as dynamical stability and system architecture for this intriguing exoplanet system.With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737
    corecore