2,140 research outputs found

    The Ursinus Weekly, June 8, 1906

    Get PDF
    A dream of Heaven • The Baccalaureate sermon • Song recital • Class Day • The junior oratorical contest • Commencement • The Charmidean banquet • Society notes • Baseball • Alumni Day • Commencement game • Literary Supplement: A twentieth century renaissance; The college man in public life; Formation of the Schuylkill Valley; Does prevalence of natural science tend to check poetic spirit?; Janice Meredith and the modern girlhttps://digitalcommons.ursinus.edu/weekly/2983/thumbnail.jp

    MTFuzz: Fuzzing with a Multi-Task Neural Network

    Full text link
    Fuzzing is a widely used technique for detecting software bugs and vulnerabilities. Most popular fuzzers generate new inputs using an evolutionary search to maximize code coverage. Essentially, these fuzzers start with a set of seed inputs, mutate them to generate new inputs, and identify the promising inputs using an evolutionary fitness function for further mutation. Despite their success, evolutionary fuzzers tend to get stuck in long sequences of unproductive mutations. In recent years, machine learning (ML) based mutation strategies have reported promising results. However, the existing ML-based fuzzers are limited by the lack of quality and diversity of the training data. As the input space of the target programs is high dimensional and sparse, it is prohibitively expensive to collect many diverse samples demonstrating successful and unsuccessful mutations to train the model. In this paper, we address these issues by using a Multi-Task Neural Network that can learn a compact embedding of the input space based on diverse training samples for multiple related tasks (i.e., predicting for different types of coverage). The compact embedding can guide the mutation process by focusing most of the mutations on the parts of the embedding where the gradient is high. \tool uncovers 1111 previously unseen bugs and achieves an average of 2Ă—2\times more edge coverage compared with 5 state-of-the-art fuzzer on 10 real-world programs.Comment: ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering (ESEC/FSE) 202

    Low level of Fibrillarin, a ribosome biogenesis factor, is a new independent marker of poor outcome in breast cancer

    Get PDF
    International audienceBackground: A current critical need remains in the identification of prognostic and predictive markers in early breast cancer. It appears that a distinctive trait of cancer cells is their addiction to hyperactivation of ribosome biogenesis. Thus, ribosome biogenesis might be an innovative source of biomarkers that remains to be evaluated. Methods: Here, fibrillarin (FBL) was used as a surrogate marker of ribosome biogenesis due to its essential role in the early steps of ribosome biogenesis and its association with poor prognosis in breast cancer when overexpressed. Using 3,275 non-metastatic primary breast tumors, we analysed FBL mRNA expression levels and protein nucleolar organisation. Usage of TCGA dataset allowed transcriptomic comparison between the different FBL expression levelsrelated breast tumours. Results: We unexpectedly discovered that in addition to breast tumours expressing high level of FBL, about 10% of the breast tumors express low level of FBL. A correlation between low FBL mRNA level and lack of FBL detection at protein level using immunohistochemistry was observed. Interestingly, multivariate analyses revealed that these low FBL tumors displayed poor outcome compared to current clinical gold standards. Transcriptomic data revealed that FBL expression is proportionally associated with distinct amount of ribosomes, low FBL level being associated with low amount of ribosomes. Moreover, the molecular programs supported by low and high FBL expressing tumors were distinct. Conclusion: Altogether, we identified FBL as a powerful ribosome biogenesis-related independent marker of breast cancer outcome. Surprisingly we unveil a dual association of the ribosome biogenesis FBL factor with prognosis. These data suggest that hyper-but also hypo-activation of ribosome biogenesis are molecular traits of distinct tumors

    Blurred lines: work, eldercare and HRM

    Get PDF
    peer-reviewedThe full text of this article will not be available in ULIR until the embargo expires on the 27/06/2020Increased levels of female labour market participation have impacted on the ability of families to provide care for elderly relatives in many industrialised societies. While work–family balance has received significant academic attention, less attention has focused specifically on individuals with eldercare responsibility, a cohort which accounts for a growing segment of the labour market internationally. Taking a qualitative research approach this paper uses work/family border theory to the constraints and facilitators to reconciling care and employment for employees working full-time in Ireland. The findings highlight the significant impact that eldercare provision has on employees with regard to day-to-day work commitments. We find that while general work–life balance policies exist within organisations, that the design and functionality of such policies are of limited value to elder caregivers. Furthermore, this paper highlights how the lack of formal HR policies around eldercare within organisations results in a reliance on supervisory discretion. We make some recommendations for organisational level strategies to address the needs of a growing number of caregivers.peer-reviewe

    Internal deformation of the subducted Nazca slab inferred from seismic anisotropy

    No full text
    Within oceanic lithosphere a fossilized fabric is often preserved originating from the time of plate formation. Such fabric is thought to form at the mid-ocean ridge when olivine crystals align with the direction of plate spreading1, 2. It is unclear, however, whether this fossil fabric is preserved within slabs during subduction or overprinted by subduction-induced deformation. The alignment of olivine crystals, such as within fossil fabrics, can generate anisotropy that is sensed by passing seismic waves. Seismic anisotropy is therefore a useful tool for investigating the dynamics of subduction zones, but it has so far proved difficult to observe the anisotropic properties of the subducted slab itself. Here we analyse seismic anisotropy in the subducted Nazca slab beneath Peru and find that the fast direction of seismic wave propagation aligns with the contours of the slab. We use numerical modelling to simulate the olivine fabric created at the mid-ocean ridge, but find it is inconsistent with our observations of seismic anisotropy in the subducted Nazca slab. Instead we find that an orientation of the olivine crystal fast axes aligned parallel to the strike of the slab provides the best fit, consistent with along-strike extension induced by flattening of the slab during subduction (A. Kumar et al., manuscript in preparation). We conclude that the fossil fabric has been overprinted during subduction and that the Nazca slab must therefore be sufficiently weak to undergo internal deformation

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    • …
    corecore