53 research outputs found

    Компактная воздушная линия электропередачи повышенной мощности

    Get PDF
    Материалы XVII Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых, Гомель, 27–28 апр. 2017 г

    IODP Expedition 325: The Great Barrier Reefs Reveal Past Sea-Level, Climate and Environmental Changes Since the Last Ice Age

    Get PDF
    The timing and courses of deglaciations are key components in understanding the global climate system. Cyclic changes in global climate have occurred, with growth and decay of high latitude ice sheets, for the last two million years. It is believed that these fluctuations are mainly controlled by periodic changes to incoming solar radiation due to the changes in Earth’s orbit around the sun. However, not all climate variations can be explained by this process, and there is the growing awareness of the important role of internalclimate feedback mechanisms. Understanding the nature of these feedbacks with regard to the timing of abrupt global sea-level and climate changes is of prime importance. The tropical ocean is one of the major components of the feedback system, and hence reconstructions of temporal variations in sea-surface conditions will greatly improve our understanding of the climate system. The Integrated Ocean Drilling Program (IODP) Expedition 325 drilled 34 holes across 17 sites in the Great Barrier Reef, Australia to recoverfossil coral reef deposits. The main aim of the expedition was to understand the environmental changes that occurred during the last ice age and subsequent deglaciation, and more specifically (1) establish the course of sea-level change, (2) reconstruct the oceanographic conditions, and (3) determine the response of the reef to these changes. We recovered coral reef deposits from water depths down to 126 m that ranged in age from 9,000 years to older than 30,000 years ago. Given that the interval of the dated materials covers several paleoclimatologically important events, includingthe Last Glacial Maximum, we expect that ongoing scientific analyses will fulfill the objectives of the expedition

    A new Holocene record of geomagnetic secular variation from Windermere, UK

    Get PDF
    Paleomagnetic secular variation (PSV) records serve as valuable independent stratigraphic correlation and dating tools for marine and terrestrial sediment sequences, and enhance knowledge of geomagnetic field dynamics. We present a new radiocarbon-dated record (WINPSV-12K) of Holocene geomagnetic secular variation from Windermere, updating the existing 1981 UK master PSV curve. Our analyses used continuous U-channel samples taken from the center of four sediment cores retrieved from Windermere in 2012. The natural remanent magnetization (NRM) of each U-channel was measured before and after stepwise alternating field (AF) demagnetization on a superconducting rock magnetometer at intervals of 0.5-cm or 1-cm. The NRM data reveal a stable and well-defined primary magnetization. Component declinations and inclinations estimated using Principal Component Analysis (PCA) of NRM data from the four Windermere cores correlate well on their independent radiocarbon age models. The four records were stacked using a sliding window bootstrap method, resulting in a composite Holocene PSV record (WINPSV-12K). On millennial timescales WINPSV-12K correlates well with other records from Western Europe and the northern North Atlantic to a resolution of ∼ 1 kyr, given age uncertainties and spatial variability between records. WINPSV-12K also compares well to the CALS10k.2 and pfm9k.1a model predictions for Windermere. Key regionally-significant PSV inclination features of WINPSV-12K which correlate with other North Atlantic records include peaks at 5–6, 8.5, and 10 cal ka BP, and a trough at 7calkaBP. Key PSV declination features include the eastward swing from 5.5–2.3 cal ka BP followed by a major westward excursion at 2.3 cal ka BP, peaks at 1.1 and 7calkaBP, and troughs at 5.4 and 8.2 cal ka BP, with the caveat that an estimated magnetic lock-in delay of at least 100–200 yr is present. PSV variations on 1–3 kyr timescales are interpreted to represent strengthening and weakening of the North American versus the Siberian and European–Mediterranean high-latitude flux lobes, based on the close similarities between the North Atlantic regional records and the antiphase existing in the East Asian Stack record and the North East Pacific inclination stack. WINPSV-12K provides a regionally-important new PSV reference curve whose prominent features may serve as stratigraphic markers for North Atlantic paleo-records

    Large-scale glacitectonic deformation in response to active ice sheet retreat across Dogger Bank (southern central North Sea) during the Last Glacial Maximum

    Get PDF
    High resolution seismic data from the Dogger Bank in the central southern North Sea has revealed that the Dogger Bank Formation records a complex history of sedimentation and penecontemporaneous, large-scale, ice-marginal to proglacial glacitectonic deformation. These processes led to the development of a large thrust-block moraine complex which is buried beneath a thin sequence of Holocene sediments. This buried glacitectonic landsystem comprises a series of elongate, arcuate moraine ridges (200 m up to > 15 km across; over 40–50 km long) separated by low-lying ice marginal to proglacial sedimentary basins and/or meltwater channels, preserving the shape of the margin of this former ice sheet. The moraines are composed of highly deformed (folded and thrust) Dogger Bank Formation with the lower boundary of the deformed sequence (up to 40–50 m thick) being marked by a laterally extensive décollement. The ice-distal parts of the thrust moraine complex are interpreted as a “forward” propagating imbricate thrust stack developed in response to S/SE-directed ice-push. The more complex folding and thrusting within the more ice-proximal parts of the thrust-block moraines record the accretion of thrust slices of highly deformed sediment as the ice repeatedly reoccupied this ice marginal position. Consequently, the internal structure of the Dogger Bank thrust-moraine complexes can be directly related to ice sheet dynamics, recording the former positions of a highly dynamic, oscillating Weichselian ice sheet margin as it retreated northwards at the end of the Last Glacial Maximum

    The evolution of the Dogger Bank, North Sea: a complex history of terrestrial, glacial and marine environmental change

    Get PDF
    This paper presents a summary of the results of a detailed multidisciplinary study of the near surface geology of the Dogger Bank in the southern central North Sea, forming part of a site investigation for a major windfarm development undertaken by the Forewind consortium. It has revealed that the Dogger Bank is internally complex rather than comprising a simple “layer cake” of the Quaternary sediments as previously thought. Regional and high-resolution seismic surveys have enabled a revised stratigraphic framework to be established for the upper part of this sequence which comprises the Eem (oldest), Dogger Bank, Bolders Bank formations and Botney Cut Formation (youngest), overlain by a typically thin Holocene sequence. Detailed mapping of key horizons identified on the high-resolution seismic profiles has led to the recognition of a series of buried palaeo-landsystems which are characterised by a range of features including; glacial, glacifluvial and fluvial channels, a large-scale glacitectonic thrust-moraine complex with intervening ice-marginal basins, a lacustrine basin and marine ravinement surfaces. Interpretation of these buried landscapes has enabled the development of an environmental change model to explain the evolution of the Dogger Bank. This evolution was driven by the complex interplay between climate change, ice sheet dynamics and sea level change associated with the growth and subsequent demise of the British and Irish and Fennoscandian ice sheets during the Weichselian glaciation. Following the decay of these ice sheets the Dogger Bank entered a period of significant climatic and environmental flux which saw a terrestrial landscape being progressively inundated as sea levels rose during the Holocene

    Ice marginal dynamics of the last British-Irish Ice Sheet in the southern North Sea: Ice limits, timing and the influence of the Dogger Bank

    Get PDF
    The southern North Sea is a particularly important area for understanding the behaviour of the British-Irish Ice Sheet (BIIS) during the last glacial cycle. It preserves a record of the maximum extent of the eastern sector of the BIIS as well as evidence for multiple different ice flow phases and the dynamic re-organisation of the BIIS. However, to date, the known ice sheet history and geochronology of this region is predominantly derived from onshore geological evidence, and the offshore imprint and dynamic history of the last ice sheet remain largely unknown. Using new data collected by the BRITICE-CHRONO project this paper explores the origin and age of the Dogger Bank; re-assesses the extent and age of the glaciogenic deposits across the shallow areas of the North Sea between the Dogger Bank and the north Norfolk coast and; re-examines the dynamic behaviour of the BIIS in the southern North Sea between 31.6 and 21.5 ka. This paper shows the core of the Dogger Bank to be composed glaciolacustrine sediment deposited between 31.6 and 25.8 ka. Following its formation the western end of the Dogger lake was overridden with ice reaching ∼54°N where the ice margin is co-incident with the southerly extent of subglacial tills previously mapped as Bolders Bank Fm. This initial ice override and retreat northwards back across the Dogger lake was complete by 23.1 ka, but resulted in widespread compressive glaciotectonism of the lake sediments and the formation of thrust moraine complexes. Along the northern edge of the bank moraines are on-lapped by later phase glaciolacustrine and marine sediments but do not show evidence of subsequent ice override. The shallow seafloor to the west and southwest of the Dogger Bank records several later phases of ice advance and retreat as the North Sea Lobe flowed between the Dogger Bank and the Yorkshire/Lincolnshire coasts and reached North Norfolk. New optically stimulated luminescence (OSL) ages from Garrett Hill on outwash limit the arrival of the BIIS on the Norfolk coast to 22.8–21.5 ka. Multiple till sheets and chains of moraines on the seafloor north of Norfolk mark dynamic oscillation of the North Sea Lobe margin as it retreated northwards. This pattern of behaviour is broadly synchronous with the terrestrial record of deposition of subglacial, glaciofluvial and glaciolacustrine sediments along the Yorkshire coast which relate to post Dimlington Stadial ice marginal oscillations after 21.5 ka. With respect to forcing mechanisms it is likely that during the early phases of the last glacial maximum (∼30-23ka) the interaction between the southern margin of the BIIS and the Dogger Lake was critical in influencing flow instability and rapid ice advance and retreat. However, during the latter part of the last glacial maximum (22–21 ka) late-phase ice advance in the southern North Sea became restricted to the western side of the Dogger Bank which was a substantial topographic feature by this time. This topographic confinement, in addition to decoupling of the BIIS and the Fennoscandian Ice Sheet (FIS) further north, enabled ice to reach the north Norfolk coast, overprinting the seabed with late-phase tills of the Bolders Bank Fm

    A new varve sequence from Windermere, UK, records rapid ice retreat prior to the Lateglacial Interstadial (GI-1)

    Get PDF
    Annually laminated sediments (varves) provide excellent temporal resolution to study rapid environmental change, but are rare in the early part of the Last Termination (∼19–∼11.7 ka BP). We present a new >400 varve year (vyr) varve sequence in two floating parts from Windermere, a lake at the southern margin of the mountains of northwest England. This sequence records the final retreat of the Windermere glacier at the southern edge of the Lake District Ice Cap during the transition from Heinrich Stadial 1 (∼18–∼14.7 ka BP) into the Lateglacial Interstadial (∼14.7–∼12.9 ka BP). Laminated sediments from four lake cores from Windermere's northern and southern basins were investigated and shown to be varved. These sequences are integrated with seismic reflection evidence to reconstruct south-to-north deglaciation. Seismic and sedimentological evidence is consistent with gradual stepped ice retreat along the entire southern basin and into the northern basin between 255 and 700 vyr prior to the appearance of significant biota in the sediment that heralded the Lateglacial Interstadial, and had retreated past a recessional moraine (RM8) in the northern basin by 121 vyr prior to the interstadial. The Lateglacial Interstadial age of this biota-bearing unit was confirmed by 14C-dating, including one date from the northernmost core of ∼13.5 cal ka BP. A change in mineralogy in all four cores as the glacier retreated north of the Dent Group (the northernmost source of calcareous bedrock) and a decrease in coarse grains in the varves shows that the ice had retreated along the entire North Basin at ∼70 vyr prior to the Lateglacial Interstadial. The estimated retreat rate is 70–114 m yr−1 although buried De Geer moraines, if annual, may indicate retreat of 120 m yr−1 with a ≥3 year stillstand at a recessional moraine halfway along the basin. The glacier then retreated north of the lake basin, becoming land-terminating and retreating at 92.5–49 m yr−1. The northernmost core has a varve sequence ending at least 111 vyr after the other core chronologies, due to the increased proximity to remnant ice in the catchment uplands into the early Lateglacial Interstadial. We show that almost all of the glacier retreat in the Windermere catchment occurred before the abrupt warming at the onset of the Lateglacial Interstadial, in keeping with similar findings from around the Irish Sea Basin, and suggesting a similar retreat timescale for other radial valley glaciers of the Lake District Ice Cap. The seismic and core evidence also show the potential for a much longer varve chronology extending at least 400 and potentially over 1000 vyr further back into Heinrich Stadial 1 (18–14.7 ka BP), suggesting that glacier retreat in the Windermere valley initiated at least before 15.5 ka BP and perhaps 16 ka BP

    Palaeoseismology from microfabric and geochemical analysis of lacustrine sediment, Windermere, UK

    Get PDF
    Lake sediments commonly contain detrital layers that record events such as floods or earthquakes but these may be disturbed or partially destroyed by bioturbation. Here we use a novel combination of techniques to relate microscopic sediment fabric features to lake-basin scale processes. X-radiography and micro-XRF of cores are complemented by backscattered electron imagery and energy dispersive X-ray microanalysis of resin-embedded sediment. Together, the microfabric and geochemical methods enable the identification of clay-layer mass transport deposits despite bioturbational mixing of the original end members. Two cores with robust radionuclide chronologies contain correlative clay layers dated to 1979 (1974–1982) and 1979–1980 (1973–1986) respectively. These clay layers likely represent the distal turbidite generated by a major mass flow deposit identified from multibeam swath bathymetry and sediment grab sampling. A likely trigger for the mass flow and associated turbidity current is the 4.7 ML 1979 Carlisle earthquake. The lake basin slope was likely preconditioned for failure by increased sedimentary biogenic gas production and sediment in-wash as a result of anthropogenic activities, coupled with sediment disruption and dredging. This study highlights the effectiveness of microstratigraphic techniques in the recognition and characterisation of event layers in sediments where bioturbative disruption has occurred

    Expedition 357 Preliminary Report: Atlantis Massif Serpentinization and Life

    Get PDF
    International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy based around the use of seabed rock drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in hopes of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before and after drilling; supply synthetic tracers during drilling for contamination assessment; gather downhole electrical resistivity and magnetic susceptibility logs for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Seventeen holes were drilled at nine sites across Atlantis Massif, with two sites on the eastern end of the southern wall (Sites M0068 and M0075), three sites in the central section of the southern wall north of the Lost City hydrothermal field (Sites M0069, M0072, and M0076), two sites on the western end (Sites M0071 and M0073), and two sites north of the southern wall in the direction of the central dome of the massif and Integrated Ocean Drilling Program Site U1309 (Sites M0070 and M0074). Use of seabed rock drills enabled collection of more than 57 m of core, with borehole penetration ranging from 1.3 to 16.44 meters below seafloor and core recoveries as high as 75% of total penetration. This high level of recovery of shallow mantle sequences is unprecedented in the history of ocean drilling. The cores recovered along the southern wall of Atlantis Massif have highly heterogeneous lithologies, types of alteration, and degrees of deformation. The ultramafic rocks are dominated by harzburgites with intervals of dunite and minor pyroxenite veins, as well as gabbroic rocks occurring as melt impregnations and veins, all of which provide information about early magmatic processes and the magmatic evolution in the southernmost portion of Atlantis Massif. Dolerite dikes and basaltic rocks represent the latest stage of magmatic activity. Overall, the ultramafic rocks recovered during Expedition 357 revealed a high degree of serpentinization, as well as metasomatic talc-amphibole-chlorite overprinting and local rodingitization. Metasomatism postdates an early phase of serpentinization but predates late-stage intrusion and alteration of dolerite dikes and the extrusion of basalt. The intensity of alteration is generally lower in the gabbroic and doleritic rocks. Chilled margins in dolerite intruded into talc-amphibole-chlorite schists are observed at the most eastern Site M0075. Deformation in Expedition 357 cores is variable and dominated by brecciation and formation of localized shear zones; the degree of carbonate veining was lower than anticipated. All types of variably altered and deformed ultramafic and mafic rocks occur as components in sedimentary breccias and as fault scarp rubble. The sedimentary cap rocks include basaltic breccias with a carbonate sand matrix and/or fossiliferous carbonate. Fresh glass on basaltic components was observed in some of the breccias. The expedition also successfully applied new technologies, namely (1) extensively using an in situ sensor package and water sampling system on the seabed drills for evaluating real-time dissolved oxygen and methane, pH, oxidation-reduction potential, temperature, and conductivity during drilling; (2) deploying a borehole plug system for sealing seabed drill boreholes at four sites to allow access for future sampling; and (3) proving that tracers can be delivered into drilling fluids when using seabed drills. The rock drill sensor packages and water sampling enabled detection of elevated dissolved methane and hydrogen concentrations during and/or after drilling, with “hot spots” of hydrogen observed over Sites M0068–M0072 and methane over Sites M0070–M0072. Shipboard determination of contamination tracer delivery confirmed appropriate sample handling procedures for microbiological and geochemical analyses, which will aid all subsequent microbiological investigations that are part of the science party sampling plans, as well as verify this new tracer delivery technology for seabed drill rigs. Shipboard investigation of biomass density in select samples revealed relatively low and variable cell densities, and enrichment experiments set up shipboard reveal growth. Thus, we anticipate achieving many of the deep biosphere–related objectives of the expedition through continued scientific investigation in the coming years. Finally, although not an objective of the expedition, we were serendipitously able to generate a high-resolution (20 m per pixel) multibeam bathymetry map across the entire Atlantis Massif and the nearby fracture zone, Mid-Atlantic Ridge, and eastern conjugate, taking advantage of weather and operational downtime. This will assist science party members in evaluating and interpreting tectonic and mass-wasting processes at Atlantis Massif

    Clinical outcomes and response to treatment of patients receiving topical treatments for pyoderma gangrenosum: a prospective cohort study

    Get PDF
    Background: pyoderma gangrenosum (PG) is an uncommon dermatosis with a limited evidence base for treatment. Objective: to estimate the effectiveness of topical therapies in the treatment of PG. Methods: prospective cohort study of UK secondary care patients with a clinical diagnosis of PG suitable for topical treatment (recruited July 2009 to June 2012). Participants received topical therapy following normal clinical practice (mainly Class I-III topical corticosteroids, tacrolimus 0.03% or 0.1%). Primary outcome: speed of healing at 6 weeks. Secondary outcomes: proportion healed by 6 months; time to healing; global assessment; inflammation; pain; quality-of-life; treatment failure and recurrence. Results: Sixty-six patients (22 to 85 years) were enrolled. Clobetasol propionate 0.05% was the most commonly prescribed therapy. Overall, 28/66 (43.8%) of ulcers healed by 6 months. Median time-to-healing was 145 days (95% CI: 96 days, ∞). Initial ulcer size was a significant predictor of time-to-healing (hazard ratio 0.94 (0.88;80 1.00); p = 0.043). Four patients (15%) had a recurrence. Limitations: No randomised comparator Conclusion: Topical therapy is potentially an effective first-line treatment for PG that avoids possible side effects associated with systemic therapy. It remains unclear whether more severe disease will respond adequately to topical therapy alone
    corecore