1,270 research outputs found
About the self-dual Chern-Simons system and Toda field theories on the noncommutative plane
The relation of the noncommutative self-dual Chern-Simons (NCSDCS) system to
the noncommutative generalizations of Toda and of affine Toda field theories is
investigated more deeply. This paper continues the programme initiated in , where it was presented how it is possible to define Toda
field theories through second order differential equation systems starting from
the NCSDCS system. Here we show that using the connection of the NCSDCS to the
noncommutative chiral model, exact solutions of the Toda field theories can be
also constructed by means of the noncommutative extension of the uniton method
proposed in by Ki-Myeong Lee. Particularly some
specific solutions of the nc Liouville model are explicit constructed.Comment: 24 page
On negative flows of the AKNS hierarchy and a class of deformations of bihamiltonian structure of hydrodynamic type
A deformation parameter of a bihamiltonian structure of hydrodynamic type is
shown to parameterize different extensions of the AKNS hierarchy to include
negative flows. This construction establishes a purely algebraic link between,
on the one hand, two realizations of the first negative flow of the AKNS model
and, on the other, two-component generalizations of Camassa-Holm and Dym type
equations.
The two-component generalizations of Camassa-Holm and Dym type equations can
be obtained from the negative order Hamiltonians constructed from the Lenard
relations recursively applied on the Casimir of the first Poisson bracket of
hydrodynamic type. The positive order Hamiltonians, which follow from Lenard
scheme applied on the Casimir of the second Poisson bracket of hydrodynamic
type, are shown to coincide with the Hamiltonians of the AKNS model. The AKNS
Hamiltonians give rise to charges conserved with respect to equations of motion
of two-component Camassa-Holm and two-component Dym type equations.Comment: 20 pages, Late
Therapeutic targeting of replicative immortality
One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed “senescence,” can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells’ heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy
Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey
We present the combination of optical data from the Science Verification phase of the Dark
Energy Survey (DES) with near-infrared (NIR) data from the European Southern Observatory
VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to
extract fluxes and associated errors from the shallower VHS data. Joint seven-band (grizYJK)
photometric catalogues are produced in a single 3 sq-deg dedicated camera field centred at
02h26m−04d36m where the availability of ancillary multiwavelength photometry and spectroscopy
allows us to test the data quality. Dual photometry increases the number of DES
galaxies with measured VHS fluxes by a factor of ∼4.5 relative to a simple catalogue level
matching and results in a ∼1.5 mag increase in the 80 per cent completeness limit of the NIR
data. Almost 70 per cent of DES sources have useful NIR flux measurements in this initial
catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic
redshifts and initial results, although currently limited by small number statistics, indicate that
the VHS data can help reduce the photometric redshift scatter at both z 1. We
present example DES+VHS colour selection criteria for high-redshift luminous red galaxies
(LRGs) at z ∼ 0.7 as well as luminous quasars. Using spectroscopic observations in this field
we show that the additional VHS fluxes enable a cleaner selection of both populations with
<10 per cent contamination from galactic stars in the case of spectroscopically confirme
Forward Global Photometric Calibration of the Dark Energy Survey
Many scientific goals for the Dark Energy Survey (DES) require calibration of
optical/NIR broadband photometry that is stable in time and uniform
over the celestial sky to one percent or better. It is also necessary to limit
to similar accuracy systematic uncertainty in the calibrated broadband
magnitudes due to uncertainty in the spectrum of the source. Here we present a
"Forward Global Calibration Method (FGCM)" for photometric calibration of the
DES, and we present results of its application to the first three years of the
survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at
the observatory with data from the broad-band survey imaging itself and models
of the instrument and atmosphere to estimate the spatial- and time-dependence
of the passbands of individual DES survey exposures. "Standard" passbands are
chosen that are typical of the passbands encountered during the survey. The
passband of any individual observation is combined with an estimate of the
source spectral shape to yield a magnitude in the standard
system. This "chromatic correction" to the standard system is necessary to
achieve sub-percent calibrations. The FGCM achieves reproducible and stable
photometric calibration of standard magnitudes of stellar
sources over the multi-year Y3A1 data sample with residual random calibration
errors of per exposure. The accuracy of the
calibration is uniform across the DES footprint to
within . The systematic uncertainties of magnitudes in
the standard system due to the spectra of sources are less than
for main sequence stars with .Comment: 25 pages, submitted to A
Quasar accretion disk sizes from continuum reverberation mapping in the DES standard-star fields
Measurements of the physical properties of accretion disks in active galactic
nuclei are important for better understanding the growth and evolution of
supermassive black holes. We present the accretion disk sizes of 22 quasars
from continuum reverberation mapping with data from the Dark Energy Survey
(DES) standard star fields and the supernova C fields. We construct continuum
lightcurves with the \textit{griz} photometry that span five seasons of DES
observations. These data sample the time variability of the quasars with a
cadence as short as one day, which corresponds to a rest frame cadence that is
a factor of a few higher than most previous work. We derive time lags between
bands with both JAVELIN and the interpolated cross-correlation function method,
and fit for accretion disk sizes using the JAVELIN Thin Disk model. These new
measurements include disks around black holes with masses as small as
, which have equivalent sizes at 2500\AA \, as small as
light days in the rest frame. We find that most objects have
accretion disk sizes consistent with the prediction of the standard thin disk
model when we take disk variability into account. We have also simulated the
expected yield of accretion disk measurements under various observational
scenarios for the Large Synoptic Survey Telescope Deep Drilling Fields. We find
that the number of disk measurements would increase significantly if the
default cadence is changed from three days to two days or one day.Comment: 33 pages, 24 figure
Genetic admixture patterns in argentinian patagonia
As in other Latin American populations, Argentinians are the result of the admixture amongst different continental groups, mainly from America and Europe, and to a lesser extent from Sub-Saharan Africa. However, it is known that the admixture processes did not occur homogeneously throughout the country. Therefore, considering the importance for anthropological, medical and forensic researches, this study aimed to investigate the population genetic structure of the Argentinian Patagonia, through the analysis of 46 ancestry informative markers, in 433 individuals from five different localities. Overall, in the Patagonian sample, the average individual ancestry was estimated as 35.8% Native American (95% CI: 32.2–39.4%), 62.1% European (58.5–65.7%) and 2.1% African (1.7–2.4%). Comparing the five localities studied, statistically significant differences were observed for the Native American and European contributions, but not for the African ancestry. The admixture results combined with the genealogical information revealed intra-regional variations that are consistent with the different geographic origin of the participants and their ancestors. As expected, a high European ancestry was observed for donors with four grandparents born in Europe (96.8%) or in the Central region of Argentina (85%). In contrast, the Native American ancestry increased when the four grandparents were born in the North (71%) or in the South (61.9%) regions of the country, or even in Chile (60.5%). In summary, our results showed that differences on continental ancestry contribution have different origins in each region in Patagonia, and even in each locality, highlighting the importance of knowing the origin of the participants and their ancestors for the correct interpretation and contextualization of the genetic information.Finantial support was granted by Agencia Nacional de Promoción Científica y Tecnológica, Argentina (ANPCyT; https://www.argentina.gob.ar/ ciencia/agencia; grants ref. MPL PICT 2013-2414, JLL PICT 2014-1558), and Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil (CNPq; http://www.cnpq.br; grant ref. LG 305330/2016-0)
Astrometric calibration and performance of the Dark Energy Camera
We characterize the ability of the Dark Energy Camera (DECam) to perform
relative astrometry across its 500~Mpix, 3 deg^2 science field of view, and
across 4 years of operation. This is done using internal comparisons of ~4x10^7
measurements of high-S/N stellar images obtained in repeat visits to fields of
moderate stellar density, with the telescope dithered to move the sources
around the array. An empirical astrometric model includes terms for: optical
distortions; stray electric fields in the CCD detectors; chromatic terms in the
instrumental and atmospheric optics; shifts in CCD relative positions of up to
~10 um when the DECam temperature cycles; and low-order distortions to each
exposure from changes in atmospheric refraction and telescope alignment. Errors
in this astrometric model are dominated by stochastic variations with typical
amplitudes of 10-30 mas (in a 30 s exposure) and 5-10 arcmin coherence length,
plausibly attributed to Kolmogorov-spectrum atmospheric turbulence. The size of
these atmospheric distortions is not closely related to the seeing. Given an
astrometric reference catalog at density ~0.7 arcmin^{-2}, e.g. from Gaia, the
typical atmospheric distortions can be interpolated to 7 mas RMS accuracy (for
30 s exposures) with 1 arcmin coherence length for residual errors. Remaining
detectable error contributors are 2-4 mas RMS from unmodelled stray electric
fields in the devices, and another 2-4 mas RMS from focal plane shifts between
camera thermal cycles. Thus the astrometric solution for a single DECam
exposure is accurate to 3-6 mas (0.02 pixels, or 300 nm) on the focal plane,
plus the stochastic atmospheric distortion.Comment: Submitted to PAS
Recommended from our members
H0LiCOW X: Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI2033-4723
Galaxies and galaxy groups located along the line of sight towards
gravitationally lensed quasars produce high-order perturbations of the
gravitational potential at the lens position. When these perturbation are too
large, they can induce a systematic error on of a few-percent if the lens
system is used for cosmological inference and the perturbers are not explicitly
accounted for in the lens model. In this work, we present a detailed
characterization of the environment of the lens system WFI2033-4723 (, = 0.6575), one of the core targets of the H0LICOW
project for which we present cosmological inferences in a companion paper (Rusu
et al. 2019). We use the Gemini and ESO-Very Large telescopes to measure the
spectroscopic redshifts of the brightest galaxies towards the lens, and use the
ESO-MUSE integral field spectrograph to measure the velocity-dispersion of the
lens ( km/s) and of several nearby
galaxies. In addition, we measure photometric redshifts and stellar masses of
all galaxies down to mag, mainly based on Dark Energy Survey imaging
(DR1). Our new catalog, complemented with literature data, more than doubles
the number of known galaxy spectroscopic redshifts in the direct vicinity of
the lens, expanding to 116 (64) the number of spectroscopic redshifts for
galaxies separated by less than 3 arcmin (2 arcmin) from the lens. Using the
flexion-shift as a measure of the amplitude of the gravitational perturbation,
we identify 2 galaxy groups and 3 galaxies that require specific attention in
the lens models. The ESO MUSE data enable us to measure the
velocity-dispersions of three of these galaxies. These results are essential
for the cosmological inference analysis presented in Rusu et al. (2019).Comment: Matches the version accepted for publication by MNRAS. Note that this
paper previously appeared as H0LICOW X
Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS
We present the results of the first test plates of the extended Baryon
Oscillation Spectroscopic Survey. This paper focuses on the emission line
galaxies (ELG) population targetted from the Dark Energy Survey (DES)
photometry. We analyse the success rate, efficiency, redshift distribution, and
clustering properties of the targets. From the 9000 spectroscopic redshifts
targetted, 4600 have been selected from the DES photometry. The total success
rate for redshifts between 0.6 and 1.2 is 71\% and 68\% respectively for a
bright and faint, on average more distant, samples including redshifts measured
from a single strong emission line. We find a mean redshift of 0.8 and 0.87,
with 15 and 13\% of unknown redshifts respectively for the bright and faint
samples. In the redshift range 0.6<z<1.2, for the most secure spectroscopic
redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9
respectively. Star contamination is lower than 2\%. We measure a galaxy bias
averaged on scales of 1 and 10~Mpc/h of 1.72 \pm 0.1 for the bright sample and
of 1.78 \pm 0.12 for the faint sample. The error on the galaxy bias have been
obtained propagating the errors in the correlation function to the fitted
parameters. This redshift evolution for the galaxy bias is in agreement with
theoretical expectations for a galaxy population with MB-5\log h < -21.0. We
note that biasing is derived from the galaxy clustering relative to a model for
the mass fluctuations. We investigate the quality of the DES photometric
redshifts and find that the outlier fraction can be reduced using a comparison
between template fitting and neural network, or using a random forest
algorithm
- …