57 research outputs found

    The burden of disease in Spain: results from the global burden of disease study 2010

    Get PDF
    BackgroundWe herein evaluate the Spanish population¿s trends in health burden by comparing results of two Global Burden of Diseases, Injuries, and Risk Factors Studies (the GBD studies) performed 20 years apart.MethodsData is part of the GBD study for 1990 and 2010. We present results for mortality, years of life lost (YLLs), years lived with disability, and disability-adjusted life years (DALYs) for the Spanish population. Uncertainty intervals for all measures have been estimated.ResultsNon-communicable diseases accounted for 3,703,400 (95% CI 3,648,270¿3,766,720) (91.3%) of 4,057,400 total deaths, in the Spanish population. Cardiovascular and circulatory diseases were the main cause of mortality among non-communicable diseases (34.7% of total deaths), followed by neoplasms (27.1% of total deaths). Neoplasms, cardiovascular and circulatory diseases, and chronic respiratory diseases were the top three leading causes for YLLs. The most important causes of DALYs in 2010 were neoplasms, cardiovascular and circulatory diseases, musculoskeletal disorders, and mental and behavioral disorders.ConclusionsMortality and disability in Spain have become even more linked to non-communicable diseases over the last years, following the worldwide trends. Cardiovascular and circulatory diseases, neoplasms, mental and behavioral disorders, and neurological disorders are the leading causes of mortality and disability. Specific focus is needed from health care providers and policy makers to develop health promotion and health education programs directed towards non-communicable disorders

    High sodium intake is associated with self-reported rheumatoid arthritis: a cross sectional and case control analysis within the SUN cohort

    Get PDF
    Sodium intake is a potential environmental factor for immune-mediated inflammatory diseases. The aim of this study is to investigate the association of sodium intake with rheumatoid arthritis. We performed a cross-sectional study nested in a highly educated cohort investigating dietary habits as determinants of disease. Daily sodium intake in grams per day was estimated from a validated food frequency questionnaire. We identified prevalent self-reported cases of rheumatoid arthritis. Logistic regressionmodelswere used to estimate the odds ratio for rheumatoid arthritis by sodium intake adjusting for confounders. Linear trend tests and interactions between variables were explored. Sensitivity analyses included age- and sex-matched case–control study, logistic multivariate model adjusted by residuals, and analysis excluding individuals with prevalent diabetes or cardiovascular disease. The effective sample size was 18,555 individuals (mean age 38-years old, 60% women) including 392 self-reported rheumatoid arthritis. Median daily sodium intake (estimated from foods plus added salt) was 3.47 (P25–75: 2.63–4.55) grams. Total sodium intake in the fourth quartile showed a significant association with rheumatoid arthritis (fully adjusted odds ratio 1.5; 95% CI 1.1–2.1, P for trend¼0.02). Never smokers with high sodium intake had higher association than ever smokers with high sodium intake (P for interaction¼0.007). Dosedependent association was replicated in the case–control study. High sodiumintakemay be associated with a diagnosis of rheumatoid arthritis. This confirms previous clinical and experimental research

    data from the EULAR COVAX physician-reported registry

    Get PDF
    Publisher Copyright: © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.BACKGROUND: There is a lack of data on SARS-CoV-2 vaccination safety in children and young people (CYP) with rheumatic and musculoskeletal diseases (RMDs). Current vaccination guidance is based on data from adults with RMDs or CYP without RMDs. OBJECTIVES: To describe the safety of SARS-COV-2 vaccination in adolescents with inflammatory RMDs and adults with juvenile idiopathic arthritis (JIA). METHODS: We described patient characteristics, flares and adverse events (AEs) in adolescent cases under 18 with inflammatory RMDs and adult cases aged 18 or above with JIA submitted to the European Alliance of Associations for Rheumatology COVAX registry. RESULTS: A total of 110 cases were reported to the registry. Thirty-six adolescent cases were reported from four countries, most with JIA (42%). Over half (56%) reported early reactogenic-like AEs. One mild polyarthralgia flare and one serious AE of special interest (malaise) were reported. No CYP reported SARS-CoV-2 infection postvaccination.Seventy-four adult JIA cases were reported from 11 countries. Almost two-thirds (62%) reported early reactogenic-like AEs and two flares were reported (mild polyarthralgia and moderate uveitis). No serious AEs of special interest were reported among adults with JIA. Three female patients aged 20-30 years were diagnosed with SARS-CoV-2 postvaccination; all fully recovered. CONCLUSIONS: This is an important contribution to research on SARS-CoV-2 vaccine safety in adolescents with RMDs and adults with JIA. It is important to note the low frequency of disease flares, serious AEs and SARS-CoV-2 reinfection seen in both populations, although the dataset is limited by its size.publishersversionpublishe

    The EULAR Study Group for Registers and Observational Drug Studies: comparability of the patient case mix in the European biologic disease modifying anti-rheumatic drug registers

    Get PDF
    Objective. Under the auspices of the European League Against Rheumatism (EULAR), a study group of investigators representing European biologic DMARD (bDMARD) registers was convened. The purpose of this initial assessment was to collect and compare a cross section of patient characteristics and collate information on the availability of potential confounders within these registers. Methods. Baseline characteristics of patients starting their first bDMARD in an arbitrary year (2008) for the treatment of RA, including demographic and disease characteristics, bDMARD drug details and co-morbidities, were collected and compared across 14 European bDMARD registers. Results. A total of 5320 patients were included. Half the registers had restricted recruitment to certain bDMARDs during the study year. All registers's collected data on age, gender, disease duration, seropositivity for IgM-RF and 28-joint DAS (DAS28). The mean DAS28 ranged from 4.2 to 6.6 and the mean HAQ from 0.8 to 1.9. Current smoking ranged from 9% to 34%. Nine registers reported co-morbidities with varying prevalence. Conclusion. In addition to demonstrating European-wide collaboration across rheumatology bDMARD registers, this assessment identified differences in prescribing patterns, recruitment strategies and data items collected. These differences need to be considered when applying strategies for combined analysis. The lack of a common data model across Europe calls for further work to harmonize data collection across register

    Multinational evidence-based recommendations for the diagnosis and management of gout: integrating systematic literature review and expert opinion of a broad panel of rheumatologists in the 3e initiative

    Get PDF
    We aimed to develop evidence-based multinational recommendations for the diagnosis and management of gout. Using a formal voting process, a panel of 78 international rheumatologists developed 10 key clinical questions pertinent to the diagnosis and management of gout. Each question was investigated with a systematic literature review. Medline, Embase, Cochrane CENTRAL and abstracts from 2010-2011 European League Against Rheumatism and American College of Rheumatology meetings were searched in each review. Relevant studies were independently reviewed by two individuals for data extraction and synthesis and risk of bias assessment. Using this evidence, rheumatologists from 14 countries (Europe, South America and Australasia) developed national recommendations. After rounds of discussion and voting, multinational recommendations were formulated. Each recommendation was graded according to the level of evidence. Agreement and potential impact on clinical practice were assessed. Combining evidence and clinical expertise, 10 recommendations were produced. One recommendation referred to the diagnosis of gout, two referred to cardiovascular and renal comorbidities, six focused on different aspects of the management of gout (including drug treatment and monitoring), and the last recommendation referred to the management of asymptomatic hyperuricaemia. the level of agreement with the recommendations ranged from 8.1 to 9.2 (mean 8.7) on a 1-10 scale, with 10 representing full agreement. Ten recommendations on the diagnosis and management of gout were established. They are evidence-based and supported by a large panel of rheumatologists from 14 countries, enhancing their utility in clinical practice.AbbVieAustralian National Health and Medical Research Council (NHMRC)Hosp Gen Univ Elda, Dept Reumatol, Elda 03600, SpainHosp Gen Univ Alicante, Dept Reumatol, Alicante, SpainUniv Camilo Jose Cela, Fac Ciencias Salud, Madrid, SpainUniv British Columbia, Div Rheumatol, Vancouver, BC V5Z 1M9, CanadaRoyal Melbourne Hosp, Parkville, Vic 3050, AustraliaUniv Hosp Southampton NHS Fdn Trust, Southampton, Hants, EnglandNIHR Wellcome Trust Clin Res Facil, Southampton, Hants, EnglandCtr Hosp Univ Liege, Liege, BelgiumMaastricht Univ, Med Ctr, Dept Internal Med Rheumatol, Maastricht, NetherlandsAtrium Med Ctr, Heerlen, NetherlandsUniv Toronto, Div Rheumatol, Toronto, ON, CanadaRepatriat Gen Hosp, Rheumatol Res Unit, Adelaide, SA, AustraliaFlinders Univ S Australia, Adelaide, SA 5001, AustraliaMed Univ Vienna, Dept Internal Med 3, Div Rheumatol, Vienna, AustriaUniv Toronto, Dept Hlth Policy Management & Evaluat, Toronto, ON, CanadaMt Sinai Hosp, Univ Hlth Network, Toronto Gen Res Inst, Div Clin Decis Making & Hlth Care, Toronto, ON M5G 1X5, CanadaCabrini Hosp, Monash Dept Clin Epidemiol, Malvern, Vic, AustraliaMonash Univ, Dept Epidemiol & Prevent Med, Malvern, Vic, AustraliaUniv Amsterdam, Acad Med Ctr, Dept Clin Immunol & Rheumatol, NL-1105 AZ Amsterdam, NetherlandsUniv Med Ctr Utrecht, Dept Rheumatol & Clin Immunol, Utrecht, NetherlandsUniv Nova Lisboa, Fac Ciencias Med, CEDOC, P-1200 Lisbon, PortugalEPE Hosp Egas Moniz, CHLO, Dept Rheumatol, Lisbon, PortugalHosp Gen Mexico City, Rheumatol Unit, Mexico City, DF, MexicoKarolinska Univ Hosp, Dept Rheumatol, Stockholm, SwedenKarolinska Inst, Stockholm, SwedenGhent Univ Hosp, Dept Rheumatol, Ghent, BelgiumUniversidade Federal de São Paulo, Div Rheumatol, São Paulo, BrazilSt Georges Healthcare NHS Trust, Dept Rheumatol, London, EnglandState Hosp Stockerau, Ctr Rheumatol, Lower Austria, Stockerau, AustriaUniv Pavia, IRCCS Policlin S Matteo, Cattedra Reumatol, I-27100 Pavia, ItalyUniv Giessen, Kerckhoff Klin, Dept Rheumatol & Clin Immunol, Bad Nauheim, GermanyCopenhagen Univ Hosp, Ctr Rheumatol & Spine Dis, Copenhagen Ctr Arthrit Res, Glostrup, DenmarkMenzies Res Inst Tasmania, Hobart, Tas, AustraliaColumbia Univ, Med Ctr, New York, NY USALeiden Univ, Med Ctr, Leiden, NetherlandsUniversidade Federal de São Paulo, Div Rheumatol, São Paulo, BrazilWeb of Scienc

    Association Between Race/Ethnicity and COVID-19 Outcomes in Systemic Lupus Erythematosus Patients From the United States: Data From the COVID-19 Global Rheumatology Alliance

    Get PDF
    OBJECTIVE: To determine the association between race/ethnicity and COVID-19 outcomes in individuals with systemic lupus erythematosus (SLE). METHODS: Individuals with SLE from the US with data entered into the COVID-19 Global Rheumatology Alliance registry between March 24, 2020 and August 27, 2021 were included. Variables included age, sex, race, and ethnicity (White, Black, Hispanic, other), comorbidities, disease activity, pandemic time period, glucocorticoid dose, antimalarials, and immunosuppressive drug use. The ordinal outcome categories were: not hospitalized, hospitalized with no oxygenation, hospitalized with any ventilation or oxygenation, and death. We constructed ordinal logistic regression models evaluating the relationship between race/ethnicity and COVID-19 severity, adjusting for possible confounders. RESULTS: We included 523 patients; 473 (90.4%) were female and the mean ± SD age was 46.6 ± 14.0 years. A total of 358 patients (74.6%) were not hospitalized; 40 patients (8.3%) were hospitalized without oxygen, 64 patients (13.3%) were hospitalized with any oxygenation, and 18 (3.8%) died. In a multivariable model, Black (odds ratio [OR] 2.73 [95% confidence interval (95% CI) 1.36–5.53]) and Hispanic (OR 2.76 [95% CI 1.34–5.69]) individuals had higher odds of more severe outcomes than White individuals. CONCLUSION: Black and Hispanic individuals with SLE experienced more severe COVID-19 outcomes, which is consistent with findings in the US general population. These results likely reflect socioeconomic and health disparities and suggest that more aggressive efforts are needed to prevent and treat infection in this population

    SARS-CoV-2 breakthrough infections among vaccinated individuals with rheumatic disease : Results from the COVID-19 Global Rheumatology Alliance provider registry

    Get PDF
    Funding Information: members of the COVID-19 Global Rheumatology Alliance and do not necessarily represent the views of the American College of Rheumatology (ACR), EULAR, the UK National Health Service (NHS), the National Institute for Health Research (NIHR), the UK Department of Health or any other organisation. Competing interests KLH reports she has received non-personal speaker’s fees from AbbVie and grant income from BMS, UCB and Pfizer, all unrelated to this manuscript; KLH is supported by the NIHR Manchester Biomedical Research Centre. LG reports personal consultant fees from AbbVie, Amgen, BMS, Biogen, Celgene, Gilead, Janssen, Lilly, Novartis, Pfizer, Samsung Bioepis, Sanofi-Aventis and UCB, and grants from Amgen, Lilly, Janssen, Pfizer, Sandoz, Sanofi and Galapagos, all unrelated to this manuscript. AS reports research grants from a consortium of 14 companies (among them AbbVie, BMS, Celltrion, Fresenius Funding Information: Kabi, Gilead/Galapagos, Lilly, Mylan/Viatris, Hexal, MSD, Pfizer, Roche, Samsung, Sanofi-Aventis and UCB) supporting the German RABBIT register and personal fees from lectures for AbbVie, MSD, Roche, BMS, Lilly and Pfizer, all unrelated to this manuscript. LC has not received fees or personal grants from any laboratory, but her institute works by contract for laboratories among other institutions, such as AbbVie Spain, Eisai, Gebro Pharma, Merck Sharp & Dohme España, Novartis Farmaceutica, Pfizer, Roche Farma, Sanofi-Aventis, Astellas Pharma, Actelion Pharmaceuticals España, Grünenthal and UCB Pharma. EF-M reports personal consultant fees from Boehringer Ingelheim Portugal and that LPCDR received support for specific activities: grants from AbbVie, Novartis, Janssen-Cilag, Lilly Portugal, Sanofi, Grünenthal, MSD, Celgene, Medac, Pharmakern and GAfPA; grants and non-financial support from Pfizer; and non-financial support from Grünenthal, outside the submitted work. IB reports personal consultant fees from AbbVie, Novartis, Pfizer and Janssen, all unrelated to this manuscript. JZ reports speaker fees from AbbVie, Novartis and Janssen/Johnson & Johnson, all unrelated to this manuscript. GR-C reports personal consultant fees from Eli Lilly and Novartis, all unrelated to this manuscript. JS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers: R01 AR077607, P30 AR070253 and P30 AR072577), and the R Bruce and Joan M Mickey Research Scholar Fund. JS has received research support from Amgen and Bristol Myers Squibb and performed consultancy for Bristol Myers Squibb, Gilead, Inova, Janssen and Optum, unrelated to this work. LW receives speaker’s bureau fees from Aurinia Pharma, unrelated to this manuscript. SB reports no competing interests related to this work. He reports non-branded consulting fees for AbbVie, Horizon and Novartis (all <10000).MGMhasnocompetinginterestsrelatedtothiswork.SheservesasapatientconsultantforBMS,BIJNJandAurinia(all<10 000). MGM has no competing interests related to this work. She serves as a patient consultant for BMS, BI JNJ and Aurinia (all <10 000). RG reports no competing interests related to this work. Outside of this work she reports personal and/or speaking fees from AbbVie, Janssen, Novartis, Pfizer and Cornerstones and travel assistance from Pfizer (all <10000).JHreportsnocompetinginterestsrelatedtothiswork.HeissupportedbygrantsfromtheRheumatologyResearchFoundationandhassalarysupportfromtheChildhoodArthritisandRheumatologyResearchAlliance.HehasperformedconsultingforNovartis,SobiandBiogen,allunrelatedtothiswork(<10 000). JH reports no competing interests related to this work. He is supported by grants from the Rheumatology Research Foundation and has salary support from the Childhood Arthritis and Rheumatology Research Alliance. He has performed consulting for Novartis, Sobi and Biogen, all unrelated to this work (<10 000). ESi reports non-financial support from Canadian Arthritis Patient Alliance, outside the submitted work. PS reports personal fees from the American College of Rheumatology/Wiley Publishing, outside the submitted work. ZW reports grant support from Bristol Myers Squibb and Principia/Sanofi and performed consultancy for Viela Bio and MedPace, outside the submitted work. His work is supported by grants from the National Institutes of Health. PMM has received consulting/speaker’s fees from AbbVie, BMS, Celgene, Eli Lilly, Galapagos, Janssen, MSD, Novartis, Orphazyme, Pfizer, Roche and UCB, all unrelated to this study. PMM is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC). PCR reports no competing interests related to this work. Outside of this work PCR reports personal fees from AbbVie, Atom Bioscience, Eli Lilly, Gilead, GlaxoSmithKline, Janssen, Kukdong, Novartis, UCB, Roche and Pfizer; meeting attendance support from BMS, Pfizer and UCB; and grant funding from Janssen, Novartis, Pfizer and UCB Pharma (all <$10 000). JY reports no competing interests related to this work. Her work is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155). Outside of this work, she has received research grants or performed consulting for Gilead, BMS Foundation, Pfizer, Aurinia and AstraZeneca. Funding Information: Twitter Jean Liew @rheum_cat, Loreto Carmona @carmona_loreto, Pedro M Machado @pedrommcmachado and Philip C Robinson @philipcrobinson Contributors All authors contributed to the study design, data collection, interpretation of results and review/approval of the final submitted manuscript. JL and MG are guarantors for this manuscript. Funding MG reports grants from the National Institutes of Health, NIAMS, outside the submitted work. KLH is supported by the NIHR Manchester Biomedical Research Centre. JS is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers: R01 AR077607, P30 AR070253 and P30 AR072577), and the R Bruce and Joan M Mickey Research Scholar Fund. JH is supported by grants from the Rheumatology Research Foundation. ZW is supported by grants from the National Institutes of Health. PMM is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC). JY is supported by grants from the National Institutes of Health (K24 AR074534 and P30 AR070155). Publisher Copyright: ©Objective. While COVID-19 vaccination prevents severe infections, poor immunogenicity in immunocompromised people threatens vaccine effectiveness. We analysed the clinical characteristics of patients with rheumatic disease who developed breakthrough COVID-19 after vaccination against SARS-CoV-2.  Methods. We included people partially or fully vaccinated against SARS-CoV-2 who developed COVID-19 between 5 January and 30 September 2021 and were reported to the Global Rheumatology Alliance registry. Breakthrough infections were defined as occurring ≥14 days after completion of the vaccination series, specifically 14 days after the second dose in a two-dose series or 14 days after a single-dose vaccine. We analysed patients' demographic and clinical characteristics and COVID-19 symptoms and outcomes. Results SARS-CoV-2 infection was reported in 197 partially or fully vaccinated people with rheumatic disease (mean age 54 years, 77% female, 56% white). The majority (n=140/197, 71%) received messenger RNA vaccines. Among the fully vaccinated (n=87), infection occurred a mean of 112 (±60) days after the second vaccine dose. Among those fully vaccinated and hospitalised (n=22, age range 36-83 years), nine had used B cell-depleting therapy (BCDT), with six as monotherapy, at the time of vaccination. Three were on mycophenolate. The majority (n=14/22, 64%) were not taking systemic glucocorticoids. Eight patients had pre-existing lung disease and five patients died. Conclusion. More than half of fully vaccinated individuals with breakthrough infections requiring hospitalisation were on BCDT or mycophenolate. Further risk mitigation strategies are likely needed to protect this selected high-risk population.publishersversionPeer reviewe

    Associations of baseline use of biologic or targeted synthetic DMARDs with COVID-19 severity in rheumatoid arthritis : Results from the COVID-19 Global Rheumatology Alliance physician registry

    Get PDF
    Funding Information: Competing interests JAS is supported by the National Institute of Arthritis and Funding Information: Musculoskeletal and Skin Diseases (grant numbers K23 AR069688, R03 AR075886, L30 AR066953, P30 AR070253 and P30 AR072577), the Rheumatology Research Foundation (K Supplement Award and R Bridge Award), the Brigham Research Institute, and the R Bruce and Joan M Mickey Research Scholar Fund. JAS has received research support from Amgen and Bristol-Myers Squibb and performed consultancy for Bristol-Myers Squibb, Gilead, Inova, Janssen and Optum, unrelated to this work. ZSW reports grant support from Bristol-Myers Squibb and Principia/ Sanofi and performed consultancy for Viela Bio and MedPace, outside the submitted work. His work is supported by grants from the National Institutes of Health. MG is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (grant numbers K01 AR070585 and K24 AR074534; JY). KLH reports she has received speaker’s fees from AbbVie and grant income from BMS, UCB and Pfizer, all unrelated to this study. KLH is also supported by the NIHR Manchester Biomedical Research Centre. LC has not received fees or personal grants from any laboratory, but her institute works by contract for laboratories such as, among other institutions, AbbVie Spain, Eisai, Gebro Pharma, Merck Sharp & Dohme España, Novartis Farmaceutica, Pfizer, Roche Farma, Sanofi Aventis, Astellas Pharma, Actelion Pharmaceuticals España, Grünenthal and UCB Pharma. LG reports research grants from Amgen, Galapagos, Janssen, Lilly, Pfizer, Sandoz and Sanofi; consulting fees from AbbVie, Amgen, BMS, Biogen, Celgene, Galapagos, Gilead, Janssen, Lilly, Novartis, Pfizer, Samsung Bioepis, Sanofi Aventis and UCB, all unrelated to this study. EFM reports that LPCDR received support for specific activities: grants from AbbVie, Novartis, Janssen-Cilag, Lilly Portugal, Sanofi, Grünenthal, MSD, Celgene, Medac, Pharma Kern and GAfPA; grants and non-financial support from Pfizer; and non-financial support from Grünenthal, outside the submitted work. AS reports grants from a consortium of 13 companies (among them AbbVie, BMS, Celltrion, Fresenius Kabi, Lilly, Mylan, Hexal, MSD, Pfizer, Roche, Samsung, Sanofi Aventis and UCB) supporting the German RABBIT register, and personal fees from lectures for AbbVie, MSD, Roche, BMS and Pfizer, outside the submitted work. AD-G has no disclosures relevant to this study. His work is supported by grants from the Centers for Disease Control and Prevention and the Rheumatology Research Foundation. KMD is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (T32-AR-007258) and the Rheumatology Research Foundation. NJP is supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases (T32-AR-007258). PD has received research support from Bristol-Myers Squibb, Chugai and Pfizer, and performed consultancy for Boehringer Ingelheim, Bristol-Myers Squibb, Lilly, Sanofi, Pfizer, Chugai, Roche and Janssen, unrelated to this work. NS is supported by the RRF Investigator Award and the American Heart Association. MFU-G reports grant support from Janssen and Pfizer. SB reports no competing interests related to this work. He reports non-branded consulting fees for AbbVie, Horizon, Novartis and Pfizer (all <10000).RGreportsnocompetinginterestsrelatedtothiswork.Outsideofthisworkshereportspersonaland/orspeakingfeesfromAbbVie,Janssen,Novartis,PfizerandCornerstones,andtravelassistancefromPfizer(all<10 000). RG reports no competing interests related to this work. Outside of this work she reports personal and/or speaking fees from AbbVie, Janssen, Novartis, Pfizer and Cornerstones, and travel assistance from Pfizer (all <10 000). JH reports no competing interests related to this work. He is supported by grants from the Rheumatology Research Foundation and the Childhood Arthritis and Rheumatology Research Alliance. He has performed consulting for Novartis, Sobi and Biogen, all unrelated to this work (<10000).JLhasreceivedresearchfundingfromPfizer,outsidethesubmittedwork.ESisaBoardMemberoftheCanadianArthritisPatientAlliance,apatientrun,volunteerbasedorganisationwhoseactivitiesarelargelysupportedbyindependentgrantsfrompharmaceuticalcompanies.PSreportsnocompetinginterestsrelatedtothiswork.HereportshonorariumfordoingsocialmediaforAmericanCollegeofRheumatologyjournals(<10 000). JL has received research funding from Pfizer, outside the submitted work. ES is a Board Member of the Canadian Arthritis Patient Alliance, a patient-run, volunteer-based organisation whose activities are largely supported by independent grants from pharmaceutical companies. PS reports no competing interests related to this work. He reports honorarium for doing social media for American College of Rheumatology journals (<10 000). PMM has received consulting/speaker’s fees from AbbVie, BMS, Celgene, Eli Lilly, Janssen, MSD, Novartis, Pfizer, Roche and UCB, all unrelated to this study (all <10000).PMMissupportedbytheNationalInstituteforHealthResearch(NIHR)UniversityCollegeLondonHospitals(UCLH)BiomedicalResearchCentre(BRC).PCRreportsnocompetinginterestsrelatedtothiswork.Outsideofthisworkhereportspersonalconsultingand/orspeakingfeesfromAbbVie,EliLilly,Janssen,Novartis,PfizerandUCB,andtravelassistancefromRoche(all<10 000). PMM is supported by the National Institute for Health Research (NIHR) University College London Hospitals (UCLH) Biomedical Research Centre (BRC). PCR reports no competing interests related to this work. Outside of this work he reports personal consulting and/or speaking fees from AbbVie, Eli Lilly, Janssen, Novartis, Pfizer and UCB, and travel assistance from Roche (all <10 000). JY reports no competing interests related to this work. Her work is supported by grants from the National Institutes of Health, Centers for Disease Control, and the Agency for Healthcare Research and Quality. She has performed consulting for Eli Lilly and AstraZeneca, unrelated to this project. Publisher Copyright: © Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.Objective To investigate baseline use of biologic or targeted synthetic (b/ts) disease-modifying antirheumatic drugs (DMARDs) and COVID-19 outcomes in rheumatoid arthritis (RA). Methods We analysed the COVID-19 Global Rheumatology Alliance physician registry (from 24 March 2020 to 12 April 2021). We investigated b/tsDMARD use for RA at the clinical onset of COVID-19 (baseline): abatacept (ABA), rituximab (RTX), Janus kinase inhibitors (JAKi), interleukin 6 inhibitors (IL-6i) or tumour necrosis factor inhibitors (TNFi, reference group). The ordinal COVID-19 severity outcome was (1) no hospitalisation, (2) hospitalisation without oxygen, (3) hospitalisation with oxygen/ventilation or (4) death. We used ordinal logistic regression to estimate the OR (odds of being one level higher on the ordinal outcome) for each drug class compared with TNFi, adjusting for potential baseline confounders. Results Of 2869 people with RA (mean age 56.7 years, 80.8% female) on b/tsDMARD at the onset of COVID-19, there were 237 on ABA, 364 on RTX, 317 on IL-6i, 563 on JAKi and 1388 on TNFi. Overall, 613 (21%) were hospitalised and 157 (5.5%) died. RTX (OR 4.15, 95% CI 3.16 to 5.44) and JAKi (OR 2.06, 95% CI 1.60 to 2.65) were each associated with worse COVID-19 severity compared with TNFi. There were no associations between ABA or IL6i and COVID-19 severity. Conclusions People with RA treated with RTX or JAKi had worse COVID-19 severity than those on TNFi. The strong association of RTX and JAKi use with poor COVID-19 outcomes highlights prioritisation of risk mitigation strategies for these people.publishersversionPeer reviewe

    Results From the Global Rheumatology Alliance Registry

    Get PDF
    Funding Information: We acknowledge financial support from the ACR and EULAR. The ACR and EULAR were not involved in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication. Publisher Copyright: © 2022 The Authors. ACR Open Rheumatology published by Wiley Periodicals LLC on behalf of American College of Rheumatology.Objective: Some patients with rheumatic diseases might be at higher risk for coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS). We aimed to develop a prediction model for COVID-19 ARDS in this population and to create a simple risk score calculator for use in clinical settings. Methods: Data were derived from the COVID-19 Global Rheumatology Alliance Registry from March 24, 2020, to May 12, 2021. Seven machine learning classifiers were trained on ARDS outcomes using 83 variables obtained at COVID-19 diagnosis. Predictive performance was assessed in a US test set and was validated in patients from four countries with independent registries using area under the curve (AUC), accuracy, sensitivity, and specificity. A simple risk score calculator was developed using a regression model incorporating the most influential predictors from the best performing classifier. Results: The study included 8633 patients from 74 countries, of whom 523 (6%) had ARDS. Gradient boosting had the highest mean AUC (0.78; 95% confidence interval [CI]: 0.67-0.88) and was considered the top performing classifier. Ten predictors were identified as key risk factors and were included in a regression model. The regression model that predicted ARDS with 71% (95% CI: 61%-83%) sensitivity in the test set, and with sensitivities ranging from 61% to 80% in countries with independent registries, was used to develop the risk score calculator. Conclusion: We were able to predict ARDS with good sensitivity using information readily available at COVID-19 diagnosis. The proposed risk score calculator has the potential to guide risk stratification for treatments, such as monoclonal antibodies, that have potential to reduce COVID-19 disease progression.publishersversionepub_ahead_of_prin
    corecore