783 research outputs found

    Screening for inhibitors of Staphylococcal Sortase A as novel anti-infective agents

    Get PDF
    Staphylococcus aureus is a Gram-positive human pathogen that has developed resistance to all traditionally used antibiotics. Sortase A (SrtA) is a ‘house-keeping’ enzyme present in a number of Gram-positive organisms including S. aureus that is responsible for the covalent anchoring of proteins to the cell wall through the recognition of a highly conserved LPXTG motif. Many of the proteins it anchors are involved in virulence and immune evasion suggesting that it is an attractive target for potential anti-infective therapies. Moreover, as SrtA is not vital for bacterial growth or survival, inhibition may not select for the development of drug-resistance, unlike conventional antibiotics. This study evaluated different assays to assay SrtA activity and includes an in vitro Fluorescence Resonance Energy Transfer (FRET) assay using purified recombinant SrtA protein and an in vivo whole cell-based assay that measured SrtA-mediated anchoring of Gaussia luciferase (GLuc) in S. aureus. A further in vivo assay was evaluated, which measured SrtA activity using fluorescence as a reporter and analysis by flow cytometry and structured illumination microscopy. In this study three novel small molecules were identified as potential inhibitors of SrtA using in silico computational docking and SAR analysis; NCC-00014270, NCC-00076932 and NCC-00032784. These compounds were shown to inhibit SrtA in vitro in a dose-dependent manner with IC50s of 140 ± 24.6 µM, 172 ± 28.1 µM and 628 ± 122 µM respectively and were shown to act as competitive inhibitors of the SrtA. With the use of an in vivo reporter, it was shown that all three compounds negatively affected SrtA-mediated anchoring in S. aureus whole cells. Moreover, the cytotoxicity of these lead compounds against eukaryotic cells was assessed. Overall, these data suggest that two of the three lead compounds were potential ‘hit’ molecules for further structural modification for increased inhibitory activity against SrtA

    Gaussia luciferase as a reporter for quorum sensing in staphylococcus aureus

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Gaussia luciferase (GLuc) is a secreted protein with significant potential for use as a reporter of gene expression in bacterial pathogenicity studies. To date there are relatively few examples of its use in bacteriology. In this study we show that GLuc can be functionally expressed in the human pathogen Staphylococcus aureus and furthermore show that it can be used as a biosensor for the agr quorum sensing (QS) system which employs autoinducing peptides to control virulence. GLuc was linked to the P3 promoter of the S. aureus agr operon. Biosensor strains were validated by evaluation of chemical agent-mediated activation and inhibition of agr. Use of GLuc enabled quantitative assessment of agr activity. This demonstrates the utility of Gaussia luciferase for in vitro monitoring of agr activation and inhibition

    Ultrasound of the Abdominal Wall and Groin

    Get PDF

    Synthesis, in vitro evaluation, and radiolabeling of fluorinated puromycin analogues: potential candidates for PET imaging of protein synthesis

    Get PDF
    There is currently no ideal radiotracer for imaging protein synthesis rate (PSR) by positron emission tomography (PET). Existing fluorine-18 labelled amino acid-based radiotracers predominantly visualize amino acid transporter processes, and in many cases they are not incorporated into nascent proteins at all. Others are radiolabelled with the short half-life positron emitter carbon-11 which is rather impractical for many PET centers. Based on the puromycin (6) structural manifold, a series of 10 novel derivatives of 6 was prepared via Williamson ether synthesis from a common intermediate. A bioluminescence assay was employed to study their inhibitory action on protein synthesis which identified fluoroethyl analogue (7b) as a lead compound. The fluorine-18 analogue was prepared via nucleophilic substitution of the corresponding tosylate precursor in modest radiochemical yield 2±0.6% and excellent radiochemical purity (>99%) and showed complete stability over 3 h at ambient temperature

    Factors associated with adoption of the electronic health record system among primary care physicians

    Get PDF
    Background: A territory-wide Internet-based electronic patient record allows better patient care in different sectors. The engagement of private physicians is one of the major facilitators for implementation, but there is limited information about the current adoption level of electronic medical record (eMR) among private primary care physicians. Objective: This survey measured the adoption level, enabling factors, and hindering factors of eMR, among private physicians in Hong Kong. It also evaluated the key functions and the popularity of electronic systems and vendors used by these private practitioners. Methods: A central registry consisting of 4324 private practitioners was set up. Invitations for self-administered surveys and the completed questionnaires were sent and returned via fax, email, postal mail, and on-site clinic visits. Current users and non-users of eMR system were compared according to their demographic and practice characteristics. Student’s t tests and chi-square tests were used for continuous and categorical variables, respectively. Results: A total of 524 completed surveys (response rate 524/4405 11.90%) were collected. The proportion of using eMR in private clinics was 79.6% (417/524). When compared with non-users, the eMR users were younger (users: 48.4 years SD 10.6 years vs non-users: 61.7 years SD 10.2 years, P<.001); more were female physicians (users: 80/417, 19.2% vs non-users: 14/107, 13.1%, P=.013); possessed less clinical experience (with more than20 years of practice: users: 261/417, 62.6% vs non-user: 93/107, 86.9%, P<.001); fewer worked under a Health Maintenance Organization (users: 347/417, 83.2% vs non-users: 97/107, 90.7%, P<.001) and more worked with practice partners (users: 126/417, 30.2% vs non-users: 4/107, 3.7%, P<.001). Efficiency (379/417, 90.9%) and reduction of medical errors (229/417, 54.9%) were the major enabling factors, while patient-unfriendliness (58/107, 54.2%) and limited consultation time (54/107, 50.5%) were the most commonly reported hindering factors. The key functions of computer software among eMR users consisted of electronic patient registration system (376/417, 90.2%), drug dispensing system (328/417, 78.7%) and electronic drug labels (296/417, 71.0%). SoftLink Clinic Solution was the most popular vendor (160/417, 38.4%). Conclusions: These findings identified several physician groups who should be targeted for more assistance on eMR installation and its adoption. Future studies should address the barriers of using Internet-based eMR to enhance its adoption

    Spin Crossover in a Series of Non-Hofmann-Type Fe(II) Coordination Polymers Based on [Hg(SeCN)3]-; or [Hg(SeCN)4]2-; Building Blocks

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00802.[EN] Self-assembly of [Hg(SeCN)(4)](2)-tetrahedral building blocks, iron(II) ions, and a series of bis-monodentate pyridyltype bridging ligands has afforded the new heterobimetallic Hg-II-Fe-II coordination polymers {Fe[Hg(SeCN)(3)](2)(4,4'-bipy)(2)}(n) (1), {Fe[Hg(SeCN)(4)](tvp)}(n) (2), {Fe[Hg(SeCN)(3)](2)(4,4'-azpy)(2)}(n) (3), {Fe[Hg(SeCN)(4)](4,4'-azpy)(MeOH)} n (4), {Fe[Hg(SeCN)(4)](3,3'- bipy)} n (5) and {Fe[Hg(SeCN)4](3,3'-azpy)}(n) (6) (4,4-bipy = 4,4'-bipyridine, tvp = trans-1,2-bis(4-pyridyl)ethylene, 4,4'-azpy = 4,4'-azobispyridine, 3,3-bipy = 3,3'bipyridine, 3,3'-azpy = 3,3'-azobispyridine). Single-crystal X-ray analyses show that compounds 1 and 3 display a two-dimensional robust sheet structure made up of infinite linear [(FeL)n]2n+ (L = 4,4'-bipy or 4,4'-azpy) chains linked by in situ formed {[Hg(L)(SeCN)(3)](2)}(2)-anionic dimeric bridges. Complexes 2 and 4-6 define three-dimensional networks with different topological structures, indicating, in combination with complexes 1 and 3, that the polarity, length, rigidity, and conformation of the bridging organic ligand play important roles in the structural nature of the products reported here. The magnetic properties of complexes 1 and 2 show the occurrence of temperature-and light-induced spin crossover (SCO) properties, while complexes 4-6 are in the high-spin state at all temperatures. The current results provide a new route for the design and synthesis of new SCO functional materials with non-Hofmann-type traditional structures.This work was supported by the Natural Science Foundation of China (21671121and 21773006), the Spanish Ministerio de Ciencia e Innovacion (MICINN) and FEDER funds (PID2019-106147GB-I00), and Unidad de Excelencia Maria de Maeztu (CEX2019-000919-M).Cao, T.; Valverde-Muñoz, FJ.; Duan, X.; Zhang, M.; Wang, P.; Xing, L.; Sun, F.... (2021). Spin Crossover in a Series of Non-Hofmann-Type Fe(II) Coordination Polymers Based on [Hg(SeCN)3]-; or [Hg(SeCN)4]2-; Building Blocks. Inorganic Chemistry. 60(15):11048-11057. https://doi.org/10.1021/acs.inorgchem.1c008021104811057601

    A new pharmacogenetic algorithm to predict the most appropriate dosage of acenocoumarol for stable anticoagulation in a mixed Spanish population

    Full text link
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.There is a strong association between genetic polymorphisms and the acenocoumarol dosage requirements. Genotyping the polymorphisms involved in the pharmacokinetics and pharmacodynamics of acenocoumarol before starting anticoagulant therapy would result in a better quality of life and a more efficient use of healthcare resources. The objective of this study is to develop a new algorithm that includes clinical and genetic variables to predict the most appropriate acenocoumarol dosage for stable anticoagulation in a wide range of patients. We recruited 685 patients from 2 Spanish hospitals and 1 primary healthcare center. We randomly chose 80% of the patients (n = 556), considering an equitable distribution of genotypes to form the generation cohort. The remaining 20% (n = 129) formed the validation cohort. Multiple linear regression was used to generate the algorithm using the acenocoumarol stable dosage as the dependent variable and the clinical and genotypic variables as the independent variables. The variables included in the algorithm were age, weight, amiodarone use, enzyme inducer status, international normalized ratio target range and the presence of CYP2C9∗2 (rs1799853), CYP2C9∗3 (rs1057910), VKORC1 (rs9923231) and CYP4F2 (rs2108622). The coefficient of determination (R2) explained by the algorithm was 52.8% in the generation cohort and 64% in the validation cohort. The following R2 values were evaluated by pathology: atrial fibrillation, 57.4%; valve replacement, 56.3%; and venous thromboembolic disease, 51.5%. When the patients were classified into 3 dosage groups according to the stable dosage (<11 mg/week, 11-21 mg/week, >21 mg/week), the percentage of correctly classified patients was higher in the intermediate group, whereas differences between pharmacogenetic and clinical algorithms increased in the extreme dosage groups. Our algorithm could improve acenocoumarol dosage selection for patients who will begin treatment with this drug, especially in extreme-dosage patients. The predictability of the pharmacogenetic algorithm did not vary significantly between diseases.This study was funded by a grant from the Spanish Ministry of Health and Social Policy (Instituto de Salud Carlos III, PI07/0710) and the Andalusian Regional Ministry of Health (Progress and Health Foundation, PI-0717-2013

    Dental anomaly detection using intraoral photos via deep learning

    Get PDF
    Children with orofacial clefting (OFC) present with a wide range of dental anomalies. Identifying these anomalies is vital to understand their etiology and to discern the complex phenotypic spectrum of OFC. Such anomalies are currently identified using intra-oral exams by dentists, a costly and time-consuming process. We claim that automating the process of anomaly detection using deep neural networks (DNNs) could increase efficiency and provide reliable anomaly detection while potentially increasing the speed of research discovery. This study characterizes the use of` DNNs to identify dental anomalies by training a DNN model using intraoral photographs from the largest international cohort to date of children with nonsyndromic OFC and controls (OFC1). In this project, the intraoral images were submitted to a Convolutional Neural Network model to perform multi-label multi-class classification of 10 dental anomalies. The network predicts whether an individual exhibits any of the 10 anomalies and can do so significantly faster than a human rater can. For all but three anomalies, F1 scores suggest that our model performs competitively at anomaly detection when compared to a dentist with 8 years of clinical experience. In addition, we use saliency maps to provide a post-hoc interpretation for our model’s predictions. This enables dentists to examine and verify our model’s predictions.Fil: Ragodos, Ronilo. University of Iowa; Estados UnidosFil: Wang, Tong. University of Iowa; Estados UnidosFil: Padilla, Carmencita. University of the Philippines; FilipinasFil: Hecht, Jacqueline T.. University of Texas Health Science Center at Houston; Estados UnidosFil: Poletta, Fernando Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. CEMIC-CONICET. Centro de Educaciones Médicas e Investigaciones Clínicas "Norberto Quirno". CEMIC-CONICET; ArgentinaFil: Orioli, Ieda Maria. Universidade Federal do Rio de Janeiro; BrasilFil: Buxó, Carmen J.. Universidad de Puerto Rico; Puerto RicoFil: Butali, Azeez. University of Iowa; Estados UnidosFil: Valencia Ramirez, Consuelo. Fundación Clínica Noel; ColombiaFil: Restrepo Muñeton, Claudia. Fundación Clínica Noel; ColombiaFil: Wehby, George. University of Iowa; Estados UnidosFil: Weinberg, Seth M.. University of Pittsburgh; Estados Unidos. University of Pittsburgh at Johnstown; Estados UnidosFil: Marazita, Mary L.. University of Pittsburgh at Johnstown; Estados Unidos. University of Pittsburgh; Estados UnidosFil: Moreno Uribe, Lina M.. University of Iowa; Estados UnidosFil: Howe, Brian J.. University of Iowa; Estados Unido

    Designer Oncolytic Adenovirus: Coming of Age

    Get PDF
    The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest continues for a virus capable of specific tumour cell killing via systemic administration. One candidate is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide range of strategies and technologies have been employed to empower the vector with improved pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by detailed virological studies and in vivo interactions. In this review we highlight the strides made in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid interactions enable rational modification to eliminate native tropisms, and simultaneously promote active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses natural mechanisms and regulated at every level of replication, represent the ideal platforms for local overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as though it will soon become a reality
    • …
    corecore