2,772 research outputs found
Solar dynamic heat rejection technology. Task 1: System concept development
The results are presented of a concept development study of heat rejection systems for Space Station solar dynamic power systems. The heat rejection concepts are based on recent developments in high thermal transport capacity heat pipe radiators. The thermal performance and weights of each of the heat rejection subsystems is addressed in detail, and critical technologies which require development tests and evaluation for successful demonstration are assessed and identified. Baseline and several alternate heat rejection system configurations and optimum designs are developed for both Brayton and Rankine cycles. The thermal performance, mass properties, assembly requirements, reliability, maintenance requirements and life cycle cost are determined for each configuration. A specific design was then selected for each configuration which represents an optimum design for that configuration. The final recommendations of heat rejection system configuration for either the Brayton or Rankine cycles depend on the priorities established for the evaluation criteria
Length, Protein-Protein Interactions, and Complexity
The evolutionary reason for the increase in gene length from archaea to
prokaryotes to eukaryotes observed in large scale genome sequencing efforts has
been unclear. We propose here that the increasing complexity of protein-protein
interactions has driven the selection of longer proteins, as longer proteins
are more able to distinguish among a larger number of distinct interactions due
to their greater average surface area. Annotated protein sequences available
from the SWISS-PROT database were analyzed for thirteen eukaryotes, eight
bacteria, and two archaea species. The number of subcellular locations to which
each protein is associated is used as a measure of the number of interactions
to which a protein participates. Two databases of yeast protein-protein
interactions were used as another measure of the number of interactions to
which each \emph{S. cerevisiae} protein participates. Protein length is shown
to correlate with both number of subcellular locations to which a protein is
associated and number of interactions as measured by yeast two-hybrid
experiments. Protein length is also shown to correlate with the probability
that the protein is encoded by an essential gene. Interestingly, average
protein length and number of subcellular locations are not significantly
different between all human proteins and protein targets of known, marketed
drugs. Increased protein length appears to be a significant mechanism by which
the increasing complexity of protein-protein interaction networks is
accommodated within the natural evolution of species. Consideration of protein
length may be a valuable tool in drug design, one that predicts different
strategies for inhibiting interactions in aberrant and normal pathways.Comment: 13 pages, 5 figures, 2 tables, to appear in Physica
The Prevalence and Influence of the Combination of Humor and Violence in Super Bowl Commercials
The growing concern over violence in the media has led to vast amounts of research examining the effects of violent media on viewers. An important subset of this research looks at how humor affects this relationship. While research has considered this subset in television programming, almost no research has explored this in the context of advertising. This paper builds on the little research that exists by examining the effects of combining humor and violence, as well as the theoretical approaches that underlie these effects. A content analysis is conducted to identify the prevalence of violence, humor, and the combination of these elements in a longitudinal sample of Super Bowl commercials (2005, 2007, and 2009). Further, we investigate the relationship between the joint occurrence of humor and violence in ads and ad popularity. We conclude that violent acts are rampant in these commercials and that many acts are camouflaged by the simultaneous presence of humor, especially in the most popular ads
Mechanical mode dependence of bolometric back-action in an AFM microlever
Two back action (BA) processes generated by an optical cavity based detection
device can deeply transform the dynamical behavior of an AFM microlever: the
photothermal force or the radiation pressure. Whereas noise damping or
amplifying depends on optical cavity response for radiation pressure BA, we
present experimental results carried out under vacuum and at room temperature
on the photothermal BA process which appears to be more complex. We show for
the first time that it can simultaneously act on two vibration modes in
opposite direction: noise on one mode is amplified whereas it is damped on
another mode. Basic modeling of photothermal BA shows that dynamical effect on
mechanical mode is laser spot position dependent with respect to mode shape.
This analysis accounts for opposite behaviors of different modes as observed
When is giving an impulse? An ERP investigation of intuitive prosocial behavior
Human prosociality is often assumed to emerge from exerting reflective control over initial, selfish impulses. However, recent
findings suggest that prosocial actions can also stem from processes that are fast, automatic and intuitive. Here, we attempt
to clarify when prosocial behavior may be intuitive by examining prosociality as a form of reward seeking. Using
event-related potentials (ERPs), we explored whether a neural signature that rapidly encodes the motivational salience of
an event\u2014the P300\u2014can predict intuitive prosocial motivation. Participants allocated varying amounts of money between
themselves and charities they initially labelled as high- or low-empathy targets under conditions that promoted intuitive or
reflective decision making. Consistent with our predictions, P300 amplitude over centroparietal regions was greater when
giving involved high-empathy targets than low-empathy targets, but only when deciding under intuitive conditions.
Reflective conditions, alternatively, elicited an earlier frontocentral positivity related to response inhibition, regardless of
target. Our findings suggest that during prosocial decision making, larger P300 amplitude could (i) signal intuitive prosocial
motivation and (ii) predict subsequent engagement in prosocial behavior. This work offers novel insight into when prosociality
may be driven by intuitive processes and the roots of such behaviors
The Amborella genome: an evolutionary reference for plant biology
The nuclear genome sequence of Amborella trichopoda, the sister species to all other extant angiosperms, will be an exceptional resource for plant genomics
The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks
<p>Abstract</p> <p>Background</p> <p>Currently, there is a gap between purely theoretical studies of the topology of large bioregulatory networks and the practical traditions and interests of experimentalists. While the theoretical approaches emphasize the global characterization of regulatory systems, the practical approaches focus on the role of distinct molecules and genes in regulation. To bridge the gap between these opposite approaches, one needs to combine 'general' with 'particular' properties and translate abstract topological features of large systems into testable functional characteristics of individual components. Here, we propose a new topological parameter – the pairwise disconnectivity index of a network's element – that is capable of such bridging.</p> <p>Results</p> <p>The pairwise disconnectivity index quantifies how crucial an individual element is for sustaining the communication ability between connected pairs of vertices in a network that is displayed as a directed graph. Such an element might be a vertex (i.e., molecules, genes), an edge (i.e., reactions, interactions), as well as a group of vertices and/or edges. The index can be viewed as a measure of topological redundancy of regulatory paths which connect different parts of a given network and as a measure of sensitivity (robustness) of this network to the presence (absence) of each individual element. Accordingly, we introduce the notion of a path-degree of a vertex in terms of its corresponding incoming, outgoing and mediated paths, respectively. The pairwise disconnectivity index has been applied to the analysis of several regulatory networks from various organisms. The importance of an individual vertex or edge for the coherence of the network is determined by the particular position of the given element in the whole network.</p> <p>Conclusion</p> <p>Our approach enables to evaluate the effect of removing each element (i.e., vertex, edge, or their combinations) from a network. The greatest potential value of this approach is its ability to systematically analyze the role of every element, as well as groups of elements, in a regulatory network.</p
A pilot study for augmenting atomoxetine with methylphenidate: safety of concomitant therapy in children with attention-deficit/hyperactivity disorder
<p>Abstract</p> <p>Background</p> <p>This study examined augmenting atomoxetine with extended-release methylphenidate in children whose attention-deficit/hyperactivity disorder (ADHD) previously failed to respond adequately to stimulant medication.</p> <p>Methods</p> <p>Children with ADHD and prior stimulant treatment (<it>N </it>= 25) received atomoxetine (1.2 mg/kg/day) plus placebo. After 4 weeks, patients who were responders (<it>n </it>= 4) were continued on atomoxetine/placebo while remaining patients were randomly assigned to either methylphenidate (ATX/MPH) (1.1 mg/kg/day) or placebo augmentation (ATX/PB) for another 6 weeks. Patients and sites were blind to timing of active augmentation. Safety measures included vital signs, weight, and adverse events. Efficacy was assessed by ADHD rating scales.</p> <p>Results</p> <p>Categorical increases in vital signs occurred for 5 patients (3 patients in ATX/MPH, 2 patients in ATX/PBO). Sixteen percent discontinued the study due to AE, but no difference between augmentation groups. Atomoxetine treatment was efficacious on outcome measures (<it>P </it>≤ .001), but methylphenidate did not enhance response.</p> <p>Conclusion</p> <p>Methylphenidate appears to be safely combined with atomoxetine, but conclusions limited by small sample. With atomoxetine treatment, 43% of patients achieved normalization on ADHD ratings.</p
Statistical mechanics of complex networks
Complex networks describe a wide range of systems in nature and society, much
quoted examples including the cell, a network of chemicals linked by chemical
reactions, or the Internet, a network of routers and computers connected by
physical links. While traditionally these systems were modeled as random
graphs, it is increasingly recognized that the topology and evolution of real
networks is governed by robust organizing principles. Here we review the recent
advances in the field of complex networks, focusing on the statistical
mechanics of network topology and dynamics. After reviewing the empirical data
that motivated the recent interest in networks, we discuss the main models and
analytical tools, covering random graphs, small-world and scale-free networks,
as well as the interplay between topology and the network's robustness against
failures and attacks.Comment: 54 pages, submitted to Reviews of Modern Physic
Anomalous Transport Phenomena in Fermi Liquids with Strong Magnetic Fluctuations
In many strongly correlated electron systems, remarkable violation of the
relaxation time approximation (RTA) is observed. The most famous example would
be high-Tc superconductors (HTSCs), and similar anomalous transport phenomena
have been observed in metals near their antiferromagnetic (AF) quantum critical
point (QCP). Here, we develop a transport theory involving resistivity and Hall
coefficient on the basis of the microscopic Fermi liquid theory, by considering
the current vertex correction (CVC). In nearly AF Fermi liquids, the CVC
accounts for the significant enhancements in the Hall coefficient,
magnetoresistance, thermoelectric power, and Nernst coefficient in nearly AF
metals. According to the numerical study, aspects of anomalous transport
phenomena in HTSC are explained in a unified way by considering the CVC,
without introducing any fitting parameters; this strongly supports the idea
that HTSCs are Fermi liquids with strong AF fluctuations. In addition, the
striking \omega-dependence of the AC Hall coefficient and the remarkable
effects of impurities on the transport coefficients in HTSCs appear to fit
naturally into the present theory. The present theory also explains very
similar anomalous transport phenomena occurring in CeCoIn5 and CeRhIn5, which
is a heavy-fermion system near the AF QCP, and in the organic superconductor
\kappa-(BEDT-TTF).Comment: 100 pages, Rep. Prog. Phys. 71, 026501 (2008
- …