2,608 research outputs found

    Solar dynamic heat rejection technology. Task 1: System concept development

    Get PDF
    The results are presented of a concept development study of heat rejection systems for Space Station solar dynamic power systems. The heat rejection concepts are based on recent developments in high thermal transport capacity heat pipe radiators. The thermal performance and weights of each of the heat rejection subsystems is addressed in detail, and critical technologies which require development tests and evaluation for successful demonstration are assessed and identified. Baseline and several alternate heat rejection system configurations and optimum designs are developed for both Brayton and Rankine cycles. The thermal performance, mass properties, assembly requirements, reliability, maintenance requirements and life cycle cost are determined for each configuration. A specific design was then selected for each configuration which represents an optimum design for that configuration. The final recommendations of heat rejection system configuration for either the Brayton or Rankine cycles depend on the priorities established for the evaluation criteria

    Length, Protein-Protein Interactions, and Complexity

    Full text link
    The evolutionary reason for the increase in gene length from archaea to prokaryotes to eukaryotes observed in large scale genome sequencing efforts has been unclear. We propose here that the increasing complexity of protein-protein interactions has driven the selection of longer proteins, as longer proteins are more able to distinguish among a larger number of distinct interactions due to their greater average surface area. Annotated protein sequences available from the SWISS-PROT database were analyzed for thirteen eukaryotes, eight bacteria, and two archaea species. The number of subcellular locations to which each protein is associated is used as a measure of the number of interactions to which a protein participates. Two databases of yeast protein-protein interactions were used as another measure of the number of interactions to which each \emph{S. cerevisiae} protein participates. Protein length is shown to correlate with both number of subcellular locations to which a protein is associated and number of interactions as measured by yeast two-hybrid experiments. Protein length is also shown to correlate with the probability that the protein is encoded by an essential gene. Interestingly, average protein length and number of subcellular locations are not significantly different between all human proteins and protein targets of known, marketed drugs. Increased protein length appears to be a significant mechanism by which the increasing complexity of protein-protein interaction networks is accommodated within the natural evolution of species. Consideration of protein length may be a valuable tool in drug design, one that predicts different strategies for inhibiting interactions in aberrant and normal pathways.Comment: 13 pages, 5 figures, 2 tables, to appear in Physica

    The Prevalence and Influence of the Combination of Humor and Violence in Super Bowl Commercials

    Get PDF
    The growing concern over violence in the media has led to vast amounts of research examining the effects of violent media on viewers. An important subset of this research looks at how humor affects this relationship. While research has considered this subset in television programming, almost no research has explored this in the context of advertising. This paper builds on the little research that exists by examining the effects of combining humor and violence, as well as the theoretical approaches that underlie these effects. A content analysis is conducted to identify the prevalence of violence, humor, and the combination of these elements in a longitudinal sample of Super Bowl commercials (2005, 2007, and 2009). Further, we investigate the relationship between the joint occurrence of humor and violence in ads and ad popularity. We conclude that violent acts are rampant in these commercials and that many acts are camouflaged by the simultaneous presence of humor, especially in the most popular ads

    Mechanical mode dependence of bolometric back-action in an AFM microlever

    Full text link
    Two back action (BA) processes generated by an optical cavity based detection device can deeply transform the dynamical behavior of an AFM microlever: the photothermal force or the radiation pressure. Whereas noise damping or amplifying depends on optical cavity response for radiation pressure BA, we present experimental results carried out under vacuum and at room temperature on the photothermal BA process which appears to be more complex. We show for the first time that it can simultaneously act on two vibration modes in opposite direction: noise on one mode is amplified whereas it is damped on another mode. Basic modeling of photothermal BA shows that dynamical effect on mechanical mode is laser spot position dependent with respect to mode shape. This analysis accounts for opposite behaviors of different modes as observed

    When is giving an impulse? An ERP investigation of intuitive prosocial behavior

    Get PDF
    Human prosociality is often assumed to emerge from exerting reflective control over initial, selfish impulses. However, recent findings suggest that prosocial actions can also stem from processes that are fast, automatic and intuitive. Here, we attempt to clarify when prosocial behavior may be intuitive by examining prosociality as a form of reward seeking. Using event-related potentials (ERPs), we explored whether a neural signature that rapidly encodes the motivational salience of an event\u2014the P300\u2014can predict intuitive prosocial motivation. Participants allocated varying amounts of money between themselves and charities they initially labelled as high- or low-empathy targets under conditions that promoted intuitive or reflective decision making. Consistent with our predictions, P300 amplitude over centroparietal regions was greater when giving involved high-empathy targets than low-empathy targets, but only when deciding under intuitive conditions. Reflective conditions, alternatively, elicited an earlier frontocentral positivity related to response inhibition, regardless of target. Our findings suggest that during prosocial decision making, larger P300 amplitude could (i) signal intuitive prosocial motivation and (ii) predict subsequent engagement in prosocial behavior. This work offers novel insight into when prosociality may be driven by intuitive processes and the roots of such behaviors

    The Amborella genome: an evolutionary reference for plant biology

    Get PDF
    The nuclear genome sequence of Amborella trichopoda, the sister species to all other extant angiosperms, will be an exceptional resource for plant genomics

    The pairwise disconnectivity index as a new metric for the topological analysis of regulatory networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, there is a gap between purely theoretical studies of the topology of large bioregulatory networks and the practical traditions and interests of experimentalists. While the theoretical approaches emphasize the global characterization of regulatory systems, the practical approaches focus on the role of distinct molecules and genes in regulation. To bridge the gap between these opposite approaches, one needs to combine 'general' with 'particular' properties and translate abstract topological features of large systems into testable functional characteristics of individual components. Here, we propose a new topological parameter – the pairwise disconnectivity index of a network's element – that is capable of such bridging.</p> <p>Results</p> <p>The pairwise disconnectivity index quantifies how crucial an individual element is for sustaining the communication ability between connected pairs of vertices in a network that is displayed as a directed graph. Such an element might be a vertex (i.e., molecules, genes), an edge (i.e., reactions, interactions), as well as a group of vertices and/or edges. The index can be viewed as a measure of topological redundancy of regulatory paths which connect different parts of a given network and as a measure of sensitivity (robustness) of this network to the presence (absence) of each individual element. Accordingly, we introduce the notion of a path-degree of a vertex in terms of its corresponding incoming, outgoing and mediated paths, respectively. The pairwise disconnectivity index has been applied to the analysis of several regulatory networks from various organisms. The importance of an individual vertex or edge for the coherence of the network is determined by the particular position of the given element in the whole network.</p> <p>Conclusion</p> <p>Our approach enables to evaluate the effect of removing each element (i.e., vertex, edge, or their combinations) from a network. The greatest potential value of this approach is its ability to systematically analyze the role of every element, as well as groups of elements, in a regulatory network.</p

    A pilot study for augmenting atomoxetine with methylphenidate: safety of concomitant therapy in children with attention-deficit/hyperactivity disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study examined augmenting atomoxetine with extended-release methylphenidate in children whose attention-deficit/hyperactivity disorder (ADHD) previously failed to respond adequately to stimulant medication.</p> <p>Methods</p> <p>Children with ADHD and prior stimulant treatment (<it>N </it>= 25) received atomoxetine (1.2 mg/kg/day) plus placebo. After 4 weeks, patients who were responders (<it>n </it>= 4) were continued on atomoxetine/placebo while remaining patients were randomly assigned to either methylphenidate (ATX/MPH) (1.1 mg/kg/day) or placebo augmentation (ATX/PB) for another 6 weeks. Patients and sites were blind to timing of active augmentation. Safety measures included vital signs, weight, and adverse events. Efficacy was assessed by ADHD rating scales.</p> <p>Results</p> <p>Categorical increases in vital signs occurred for 5 patients (3 patients in ATX/MPH, 2 patients in ATX/PBO). Sixteen percent discontinued the study due to AE, but no difference between augmentation groups. Atomoxetine treatment was efficacious on outcome measures (<it>P </it>≤ .001), but methylphenidate did not enhance response.</p> <p>Conclusion</p> <p>Methylphenidate appears to be safely combined with atomoxetine, but conclusions limited by small sample. With atomoxetine treatment, 43% of patients achieved normalization on ADHD ratings.</p

    Statistical mechanics of complex networks

    Get PDF
    Complex networks describe a wide range of systems in nature and society, much quoted examples including the cell, a network of chemicals linked by chemical reactions, or the Internet, a network of routers and computers connected by physical links. While traditionally these systems were modeled as random graphs, it is increasingly recognized that the topology and evolution of real networks is governed by robust organizing principles. Here we review the recent advances in the field of complex networks, focusing on the statistical mechanics of network topology and dynamics. After reviewing the empirical data that motivated the recent interest in networks, we discuss the main models and analytical tools, covering random graphs, small-world and scale-free networks, as well as the interplay between topology and the network's robustness against failures and attacks.Comment: 54 pages, submitted to Reviews of Modern Physic

    Anomalous Transport Phenomena in Fermi Liquids with Strong Magnetic Fluctuations

    Full text link
    In many strongly correlated electron systems, remarkable violation of the relaxation time approximation (RTA) is observed. The most famous example would be high-Tc superconductors (HTSCs), and similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). Here, we develop a transport theory involving resistivity and Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the current vertex correction (CVC). In nearly AF Fermi liquids, the CVC accounts for the significant enhancements in the Hall coefficient, magnetoresistance, thermoelectric power, and Nernst coefficient in nearly AF metals. According to the numerical study, aspects of anomalous transport phenomena in HTSC are explained in a unified way by considering the CVC, without introducing any fitting parameters; this strongly supports the idea that HTSCs are Fermi liquids with strong AF fluctuations. In addition, the striking \omega-dependence of the AC Hall coefficient and the remarkable effects of impurities on the transport coefficients in HTSCs appear to fit naturally into the present theory. The present theory also explains very similar anomalous transport phenomena occurring in CeCoIn5 and CeRhIn5, which is a heavy-fermion system near the AF QCP, and in the organic superconductor \kappa-(BEDT-TTF).Comment: 100 pages, Rep. Prog. Phys. 71, 026501 (2008
    • …
    corecore