43 research outputs found

    Reproduction and respiration of a climate change indicator species: effect of temperature and variable food in the copepod Centropages chierchiae

    Get PDF
    The abundance of the calanoid copepod Centropages chierchiae has increased at the northern limits of its distribution in recent decades, mainly due to oceanic climate forcing, suggesting this as a key species in monitoring climate change. Laboratory experiments were conducted to study the combined effect of temperature, food type and concentration on the egg production rate (EPR) and hatching success (HS) of C. chierchiae. Females were fed on two monoalgal diets (Gymnodinium sp. and Phaeodactylum tricornutum) at two food concentrations and at three different temperatures (13, 19, 24C). Respiration rates of both genders were measured at four different temperatures (8, 13, 19, 24C). EPR was significantly different between temperatures and food concentrations, the maximum EPR being attained when the copepods were exposed to high food levels and at 19C. Prey type significantly influenced EPR; feeding on P. tricornutum resulted in higher egg production than Gymnodinium sp. HS was significantly lower at 13C than at 19 and 24C and higher with Gymnodinium sp. Respiration rates were sex independent and increased exponentially with temperature. To maintain basal metabolism, the minimum food intake of P. tricornutum ranged between 0.4 and 1.8 g C and for Gymnodinium sp. between 0.03 and 0.13 g C. Food intake was always higher than the metabolic demands, except for the highest temperature tested (24C). The present results confirm the sensitivity of C. chierchiae to temperature variations and may help in understanding the successful expansion of its distribution towards northern latitudes.Portuguese Science and Technology Foundation (FCT) [PTDC/MAR/098643/2008, PTDC/MAR/111304/2009, PTDC/MAR/0908066/2008]; FCT [SFRH/BD/28198/2006]; [SFRH/BPD/38332/2007

    Effects of temperature, food type and food concentration on the grazing of the calanoid copepod Centropages chierchiae

    Get PDF
    Laboratory experiments were conducted to study the combined effect of temperature (8, 13, 19 and 24C), food type and food concentration on the grazing rates of the adult stages of the calanoid copepod Centropages chierchiae. As prey, the diatom Phaeodactylum tricornutum and the dinoflagellate Gymnodinium sp. (both ca. 15 m cell diameter) were used at a range of carbon concentrations similar to the ones experienced in nature (6.4 to 393.8 C L-1). Ingestion rates increased linearly with food concentration and did not differ between prey types. When comparing the effect of temperature, highest clearance and ingestion rates were obtained at 19C, whereas no difference was observed among the other temperatures. Daily rations varied between 1.2 and 183.5 body carbon day(1). Additional experiments were conducted to study the selective feeding behaviour of C. chierchiae when offered a mixture of different prey types. Selective feeding was dependent on food concentration; at low food levels, large cells were selected (Ditylum brightwellii), whereas at medium and high food concentrations no clear selection patterns were observed. In contrast to other studies, no positive selection of dinoflagellates over other algal food was found.Portuguese Science and Technology Foundation (FCT) under project VITAL [PTDC/MAR/111304/2009]; project MODELA [FCT PTDC/MAR/098643/2008]; FCT [SFRH/BPD/38332/2007, SFRH/BD/28198/2006]; Spanish Ministry of Economy and Competitively [CTM2011-23480]; European Community [227799]info:eu-repo/semantics/publishedVersio

    Pattern of Relapse and Treatment Response in WNT- Activated Medulloblastoma

    Get PDF
    Over the past decade, wingless-activated (WNT) medulloblastoma has been identified as a candidate for therapy de-escalation based on excellent survival; however, a paucity of relapses has precluded additional analyses of markers of relapse. To address this gap in knowledge, an international cohort of 93 molecularly confirmed WNT MB was assembled, where 5-year progression-free survival is 0.84 (95%, 0.763-0.925) with 15 relapsed individuals identified. Maintenance chemotherapy is identified as a strong predictor of relapse, with individuals receiving high doses of cyclophosphamide or ifosphamide having only one very late molecularly confirmed relapse (p = 0.032). The anatomical location of recurrence is metastatic in 12 of 15 relapses, with 8 of 12 metastatic relapses in the lateral ventricles. Maintenance chemotherapy, specifically cumulative cyclophosphamide doses, is a significant predictor of relapse across WNT MB. Future efforts to de-escalate therapy need to carefully consider not only the radiation dose but also the chemotherapy regimen and the propensity for metastatic relapses

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF

    Perspective on Oncogenic Processes at the End of the Beginning of Cancer Genomics

    Get PDF
    The Cancer Genome Atlas (TCGA) has catalyzed systematic characterization of diverse genomic alterations underlying human cancers. At this historic junction marking the completion of genomic characterization of over 11,000 tumors from 33 cancer types, we present our current understanding of the molecular processes governing oncogenesis. We illustrate our insights into cancer through synthesis of the findings of the TCGA PanCancer Atlas project on three facets of oncogenesis: (1) somatic driver mutations, germline pathogenic variants, and their interactions in the tumor; (2) the influence of the tumor genome and epigenome on transcriptome and proteome; and (3) the relationship between tumor and the microenvironment, including implications for drugs targeting driver events and immunotherapies. These results will anchor future characterization of rare and common tumor types, primary and relapsed tumors, and cancers across ancestry groups and will guide the deployment of clinical genomic sequencing

    The Cancer Genome Atlas Comprehensive Molecular Characterization of Renal Cell Carcinoma

    Get PDF
    Renal cell carcinoma(RCC) is not a single disease, but several histologically defined cancers with different genetic drivers, clinical courses, and therapeutic responses. The current study evaluated 843 RCC from the three major histologic subtypes, including 488 clear cell RCC, 274 papillary RCC, and 81 chromophobe RCC. Comprehensive genomic and phenotypic analysis of the RCC subtypes reveals distinctive features of each subtype that provide the foundation for the development of subtype-specific therapeutic and management strategies for patients affected with these cancers. Somatic alteration of BAP1, PBRM1, and PTEN and altered metabolic pathways correlated with subtype-specific decreased survival, while CDKN2A alteration, increased DNA hypermethylation, and increases in the immune-related Th2 gene expression signature correlated with decreased survival within all major histologic subtypes. CIMP-RCC demonstrated an increased immune signature, and a uniform and distinct metabolic expression pattern identified a subset of metabolically divergent (MD) ChRCC that associated with extremely poor survival

    The Immune Landscape of Cancer

    Get PDF
    We performed an extensive immunogenomic anal-ysis of more than 10,000 tumors comprising 33diverse cancer types by utilizing data compiled byTCGA. Across cancer types, we identified six im-mune subtypes\u2014wound healing, IFN-gdominant,inflammatory, lymphocyte depleted, immunologi-cally quiet, and TGF-bdominant\u2014characterized bydifferences in macrophage or lymphocyte signa-tures, Th1:Th2 cell ratio, extent of intratumoral het-erogeneity, aneuploidy, extent of neoantigen load,overall cell proliferation, expression of immunomod-ulatory genes, and prognosis. Specific drivermutations correlated with lower (CTNNB1,NRAS,orIDH1) or higher (BRAF,TP53,orCASP8) leukocytelevels across all cancers. Multiple control modalitiesof the intracellular and extracellular networks (tran-scription, microRNAs, copy number, and epigeneticprocesses) were involved in tumor-immune cell inter-actions, both across and within immune subtypes.Our immunogenomics pipeline to characterize theseheterogeneous tumors and the resulting data areintended to serve as a resource for future targetedstudies to further advance the field
    corecore