109 research outputs found

    Debye representation of dispersive focused waves

    Get PDF
    We report on a matrix-based diffraction integral that evaluates the focal field of any diffraction-limited axisymmetric complex system. This diffraction formula is a generalization of the Debye integral applied to apertured focused beams, which may be accommodated to broadband problems. Longitudinal chromatic aberration may limit the convenience of the Debye formulation and, additionally, spatial boundaries of validity around the focal point are provided. Fresnel number is reformulated in order to guarantee that the focal region is entirely into the region of validity of the Debye approximation when the Fresnel number of the focusing geometry largely exceeds unity. We have applied the matrix-based Debye integral to several examples. Concretely, we present an optical system for beam focusing with strong angular dispersion and free of longitudinal chromatic aberration. This simple formalism leaves an open door for analysis and design of focused beams with arbitrary angular dispersion. Our results are valid for ultrashort pulsed and polychromatic incoherent sources

    Recent Progress in Far-Field Optical Metalenses

    Get PDF
    In this chapter, a review of the recent advances in optical metalenses is presented, with special emphasis in their experimental implementation. First, the Huygens’ principle applied to ultrathin engineered metamaterials is introduced for the purpose of giving curvature to the wavefront of free-space wave fields. Primary designs based on metallic nanoslits and holey screens occasionally with variant width are first examined. Holographic plasmonic lenses are also explored offering a promising route to realize nanophotonic components. More recent metasurfaces based on nano-antenna resonators, either plasmonic or high-index dielectric, are analyzed in detail. Furthermore, 2D material lenses in the scale of a few nanometers enabling the thinnest lenses to date are here considered. Finally, dynamically reconfigurable focusing devices are reported for creating a scenario with new functionalities

    Spatial modulation of the electromagnetic energy transfer by excitation of graphene waveguide surface plasmons

    Get PDF
    We theoretically study the electromagnetic energy transfer between donor and acceptor molecules near a graphene waveguide (WG). The surface plasmons (SPs) supported by the structure provide decay channels which lead to an improvement in the energy transfer rate when the donor and acceptor are localized on the same side or even on opposite sides of the WG. The modification of the energy transfer rate compared to its value in absence of the WG are calculated by deforming the integration path into a suitable path in the complex plane. Our results show that this modification is dramatically enhanced when the symmetric and antisymmetric SPs are excited. Notable effects on the spatial dependence of the energy transfer due to the coherent interference between these SP channels, which can be tuned by chemical potential variations, are highlighted and discussed in terms of SP propagation characteristics.Fil: Olivo, Julieta Verónica. Universidad Nacional de Río Cuarto; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zapata Rodríguez, Carlos J.. Universidad de Valencia; EspañaFil: Cuevas, Mauro. Universidad de Belgrano; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Diffraction-free beams in thin films

    Get PDF
    The propagation and transmission of Bessel beams through nano-layered structures has been discussed recently. Within this framework we recognize the formation of unguided diffraction-free waves with the spot size approaching and occasionally surpassing the limit of a wavelength when a Bessel beam of any order n is launched onto a thin material slab with grazing incidence. Based on the plane-wave representation of cylindrical waves, a simple model is introduced providing an exact prescription of the transverse pattern of this type of diffraction-suppressed localized waves. Potential applications in surface science are put forward for consideration

    Dyakonov Surface Waves: Anisotropy-Enabling Confinement on the Edge

    Get PDF
    The title “Dyakonov surface waves: anisotropy enabling confinement on the edge” plainly sets the scope for this chapter. The focus here is on the formation of bounded waves at the interface of two distinct media, at least one of them exhibiting optical anisotropy, which are coined as Dyakonov surface waves (DSWs) in recognition to the physicist who reported their existence for the first time. First, the general aspects of the topic are discussed. It also treats the characterization of bounded waves in isotropic-uniaxial multilayered structures, allowing not only the derivation of the dispersion equation of DSWs but also that of surface plasmons polaritons (SPPs), for instance. Furthermore, the interaction of such surfaces waves, with the possibility of including guided waves in a given planar layer and external sources mimicking experimental setups, can be accounted for by using the transfer matrix formalism introduced here. Finally, special attention is devoted to hyperbolic media with indefinite anisotropy-enabling hybridized scenarios integrating the prototypical DSWs and SPPs

    Free-space delay lines and resonances with ultraslow pulsed Bessel beams

    Full text link
    We investigate the ultraslow motion of polychromatic Bessel beams in unbounded, nondispersive media. Control over the group velocity is exercised by means of the angular dispersion of pulsed Bessel beams of invariant transverse spatial frequency, which spontaneously emerge from near-field generators. Temporal dynamics in transients and resonances over homogeneous delay lines (dielectric slabs) are also examined

    Controlling the carrier-envelope phase of few-cycle focused laser beams with a dispersive beam expander

    Get PDF
    We report on a procedure to focalize few-cycle laser pulses in dispersive media with controlled waveform. Stationarity of the carrierenvelope phase for extended depth of focus is attained by shaping the spatial dispersion of the ultrashort beam. An adjustable group velocity is locally tuned in order to match a prescribed phase velocity at focus. A hybrid diffractive-refractive lens system is proposed to drive the wavefield to an immersion microscope objective under convenient broadband modulation. Numerical simulations demonstrate robustness over positioning of this dispersive beam expander
    • …
    corecore