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Abstract

The title “Dyakonov surface waves: anisotropy enabling confinement on the edge”
plainly sets the scope for this chapter. The focus here is on the formation of bounded
waves at the interface of two distinct media, at least one of them exhibiting optical
anisotropy, which are coined as Dyakonov surface waves (DSWs) in recognition to the
physicist who reported their existence for the first time. First, the general aspects of the
topic are discussed. It also treats the characterization of bounded waves in isotropic-
uniaxial multilayered structures, allowing not only the derivation of the dispersion
equation of DSWs but also that of surface plasmons polaritons (SPPs), for instance.
Furthermore, the interaction of such surfaces waves, with the possibility of including
guided waves in a given planar layer and external sources mimicking experimental
setups, can be accounted for by using the transfer matrix formalism introduced here.
Finally, special attention is devoted to hyperbolic media with indefinite anisotropy-
enabling hybridized scenarios integrating the prototypical DSWs and SPPs.

Keywords: surface waves, anisotropy, transfer matrix formulation

1. Introduction

The planar interface of two dissimilar materials plays a relevant role in many optical phenom-

ena. In recent years, particularly, evanescent waves have been used in newly developing

technologies such as near-field spectroscopy. The electromagnetic surface wave, which is

intimately tied to the interface, travels in a direction parallel to the interface but, on either side

of the interface, its amplitude is imperceptible after a certain distance from the interface.

The notion of an electromagnetic surface wave made a significant appearance in 1907 when
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Zen-neck [1] authored a theoretical paper exploring the possibility of a wave guided by the

interface of the atmosphere and either Earth or a large body of water. His focus was on radio

waves, a region of the electromagnetic spectrum far from the optical regime in which we are

particularly interested, but the principles involved are the same, owing to the scale invariance

of the Maxwell postulates.

Yet, nearly a century later, a unique type of wave, the surface plasmon polariton (SPP) wave,

that dominates the nanotechnology scene, at least at optical frequencies, resulted in wonderful

developments with the creation of extremely sensitive bio/chemical sensors, and improve-

ments in this mature technology continue to this day [2]. Even in this highly developed

application, the two partnering materials which meet at the interface may be simple: one is a

typical metal, a plasmonic material at optical frequencies, and the other is a homogeneous,

isotropic, dielectric material. While the interface of a plasmonic material and a polarizable

material supports SPPs, a variety of other types of surface waves can be supported by the

interface of two polarizable materials. Since polarizable materials such as dielectric materials

are less dissipative, in general, than plasmonic materials such as metals, the advantage of these

materials for long-range propagation of surface waves is apparent.

The interface of two homogeneous dielectric materials of which at least one is anisotropic may

support surface-wave propagation of another type, even though the real parts of all compo-

nents of the permittivity dyadics of both materials are positive. Interest in surface waves

guided by the interface of two dielectric materials began to take after Dyakonov in 1988 [3]

explored the propagation of a surface wave guided by the interface of a uniaxial dielectric

material and an isotropic dielectric material. The Dyakonov surface wave (DSWs) is the focus

of this chapter.

In this chapter, we perform a thorough analysis of DSWs taking place in semi-infinite aniso-

tropic media. Basic concepts related to the propagation of electromagnetic waves in homoge-

neous media will be introduced, including isotropic and anisotropic materials. Birefringent

metal-dielectric (MD) lattices will be also considered as a contribution of meta-materials in the

development of DSWs [4]. Special emphasis will be put when the effective-medium

approaches induce unsatisfactory results, which occur in most experimental configurations.

Practical cases will be analyzed including dissipative effects due to Ohmic losses of the metal.

2. Wave propagation in bulk media and interfaces

In this section we introduce the basic concepts related to the propagation of electromagnetic

waves in homogeneous media, including isotropic and anisotropic materials. We describe in

detail complex multilayered structures. For that purpose, we introduce a transfer matrix

formulation that applies to isotropic and uniaxial media simultaneously. Finally, we discuss

the conditions that give rise to surface waves at the interface of two isotropic media; the case of

dealing with anisotropic media is considered in Section 5. Moreover, we obtain the dispersion

equation for SPPs, which appears at the interface between a dielectric and a metal.
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2.1. Wave propagation in isotropic media

In this section, we consider the propagation of electromagnetic waves in linear, homogeneous,

and isotropic dielectrics. Under these conditions, the relative permittivity e relating E and D is

a scalar constant. Considering that the medium is free of electric charges and currents, and

taking into account the medium equation B ¼ μ0H, Maxwell’s equations can be written as

∇�H ¼ ee0
∂E

∂t
, (1a)

∇�E ¼ �μ0

∂H

∂t
, (1b)

∇ � E ¼ 0, (1c)

∇ �H ¼ 0: (1d)

Now, each of the scalar components of E and H satisfies the wave equation ∇
2u� c�2∂

2
t u ¼ 0,

where u represents any one of the six scalar components of the electromagnetic field and c is

the speed of the waves in the medium.

When the electromagnetic wave is plane and monochromatic, all components of the electric

and magnetic fields are harmonic functions in time and space at the time frequency ω and

spatial frequency k ¼ kx; ky; kz
� �

, respectively. Particularly they may be set as

E r; tð Þ ¼ E0 exp ik � rð Þ exp �iωtð Þ, (2a)

H r; tð Þ ¼ H0 exp ik � rð Þ exp �iωtð Þ, (2b)

where E0 rð Þ and H0 rð Þ are the complex amplitudes of the electric and magnetic fields. If we

substitute the vector wave fields of Eqs. (2) in Maxwell’s equations (1), with the help of the

transformations ∇ ! ik and ∂t ! �iω, we might attain a simplified expression of k� k� E0ð Þ,

enabling to obtain the following wave equation: M � E0 ¼ 0, where M � k⊗k� k2Iþ k20EI.

Here I is the 3 � 3 identity matrix, and k is the modulus of the wavevector k and k0 ¼ ω=c0. In

order to obtain the dispersion equation, we look for nontrivial solutions of the electric field E0

by imposing that det Mð Þ ¼ 0. Its solution leads to k2 ¼ ω2=c2. The electric field amplitude E0

can be written as a linear combination of the following vectors

be1 ¼ 0; kz;�ky
� �

, (3a)

be2 ¼ k2y þ k2z ;�kykx;�kzkx

� �
: (3b)

We point out that be1 is associated with TEx modes and that be1:be2 ¼ 0. Although not demon-

strated here, be2 is related to TMx-polarized plane waves. Note also that Eqs. (1c) and (1d) lead

to the following orthogonality relations-hips: k � ê1 ¼ k � ê2 ¼ 0. As a result, the vectors

ê1; ê2;kf g form an orthogonal trihedron.
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2.2. Wave propagation in uniaxial media

Uniaxial crystals are media with certain symmetries that make them have two equal principal

refractive indices: nx ¼ ny � no (ordinary index) and nz � ne (extraordinary index). The crystal

is to be a positive uniaxial if ne > no and negative uniaxial if ne < no. The z axis of a uniaxial

crystal is called the optic axis. We call it the ordinary polarization direction if the wave has an

eigenindex of refraction no and extraordinary, if the wave has an eigenindex of refraction ne. In

Table 1 we show the values of no and ne for some natural birefringent materials (uniaxial

crystals).

Let us now consider the propagation of wave planes in uniaxial media. To obtain the

eigenvalues associated with plane-wave propagation, we proceed in a similar way as in

Section 2.1 for isotropic media, but taking into account that now the relative permittivity

e ¼ Ex x⊗ xþ y⊗yð Þ þ Ez z⊗ zð Þ is a tensor. Therefore, we solve det Mð Þ ¼ 0, where the matrix

M � k⊗k� k2Iþ k20e. Then, after solving the abovementioned determinant, we obtain two

solutions. The first of them is k2x þ k2y þ k2z ¼ Exk
2
0 which corresponds to the dispersion equation

of the ordinary plane waves. The electric field for this kind of plane waves is proportional to

the vector beo ¼ �ky; kx; 0
� �

. As a consequence, ordinary plane waves are TEz-polarized waves.

The second solution gives us the dispersion equation of the extraordinary plane waves:

k2x þ k2y

Ez
þ
k2z
Ex

¼ k20: (4)

In this case, the electric field is proportional to the vector êe ¼ kxkz; kykz; k
2
z � Exk

2
0

� �
.

2.3. Matrix formulation for multilayered media

In this section we look at the case of multilayered media composed of different nonmagnetic

materials which are separated by planar parallel interfaces, displaced on x ¼ xi as shown in

Figure 1. In particular, we deal with either uniaxial or isotropic materials, including metals. We

make a detailed description of the electromagnetic fields inside a given medium “i”, which lies

in xi�1 < x < xi. Our objective is the analysis of the appropriate conditions for the propagation

of surface waves at the abovementioned interfaces.

Birefringent material no ne Δn ¼ ne � no

Crystal quartz 1.547 1.556 0.009

MgF 1.3786 1.3904 0.0118

YVO4 1.9929 2.2154 0.2225

Rutile (TiO2) 2.65 2.95 0.3

E7 liquid crystal 1.520 1.725 0.205

Calomel (Hg2Cl2) 1.96 2.62 0.68

Table 1. Birefringence Δn of some natural materials [5].
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2.3.1. Electromagnetic fields in a uniaxial elementary layer

Let us first consider a multilayered media of uniaxial materials. For simplicity, let us take into

account only relative permittivities of the form ei ¼ Exi x⊗ xþ y⊗ yð Þ þ Ezi z⊗ zð Þ for a given

medium “i.” As we demonstrated in Section 2.2, the dispersion equation for extraordinary

waves propagating in bulk uniaxial media is given by Eq. (4). Due to the boundary conditions

at the interfaces between different media, the components of the wave vector ky and kz are

conserved, but not its projection upon the x-axis. More specifically, if we rename kxi � koi for

ordinary waves, we can write

koi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Exik
2
0 � k2y þ k2z

� �

r

, (5)

and for extraordinary waves (here kxi � kei)

kei ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ezik
2
0 � k2y þ

Ezik
2
z

Exi

� �

s

, (6)

taken from Eq. (4).

The total electric field of the elementary layer “i” is set as

E
ið Þ
tot ¼ E ið Þ xð Þ exp ikyyþ ikzz� iωt

� �

: (7)

The part of the electric field that varies along with the spatial coordinate x can be written as

E ið Þ xð Þ ¼ Aoiâoi exp ikoi x� xið Þ½ � þ Boib̂oi exp �ikoi x� xið Þ½ �

þAeiâei exp ikei x� xið Þ½ � þ Beib̂ei exp �ikei x� xið Þ½ �,
(8)

where the amplitude Aoi (and Aei) corresponds to propagating ordinary (and extraordinary)

waves, and Boi (and Bei) is related with counter-propagating ordinary (and extraordinary)

Figure 1. Schematic arrangement of the multilayered media. The amplitudes Ai and A0
i (Bi and B0

i) correspond to waves

propagating along the positive (negative) x-axis. These amplitudes characterize a given state of polarization: For uniaxial

media we may deal with ordinary (for example, Aoi) and extraordinary (Aei) waves. For isotropic materials we have TE-

polarized (ATEi) and TM-polarized (ATMi) waves.
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waves. Note that all these amplitudes have zero dephase at x ¼ xi. Finally, the vectors âoi and

âei are rewritten as:

âoi ¼ �ky; koi; 0
� �

, (9a)

âei ¼ keikz; kykz; k
2
z � Exik

2
0

� �

: (9b)

In the case of counter-propagating waves, we take into consideration that kxi ¼ �koi for ordi-

nary waves and kxi ¼ �kei for extraordinary waves. This fact leads us to introduce the vector

fields

b̂oi ¼ �ky;�koi; 0
� �

, (10a)

b̂ei ¼ �keikz; kykz; k
2
z � Exik

2
0

� �

: (10b)

The vector fields âoi and b̂oi can be given in units of k0, whereas âei and b̂ei can be expressed in

units of k20.

For convenience, the field function E
ið Þ can be set in terms of the wave amplitudes A0

oi, A
0
ei and

B0
oi and B0

ei with zero dephase at x ¼ xi�1, namely:

E
ið Þ xð Þ ¼ A0

oiâoi exp ikoi x� xi�1ð Þ½ � þ B0
oib̂oiþ1 exp �ikoi x� xi�1ð Þ½ �

þ A0
eiâei exp ikei x� xi�1ð Þ½ � þ B0

eib̂ei exp �ikei x� xi�1ð Þ½ �:
(11)

The complete set of amplitudes is Aqi, A
0
qi and Bqi and B0

qi where q ¼ o; ef g satisfies the

following relationships:

A0
qi ¼ Aqi exp �ikqi xi � xi�1ð Þ

	 


, (12a)

B0
qi ¼ Bqi exp ikqi xi � xi�1ð Þ

	 


: (12b)

For completeness we calculate the magnetic field in a given elementary layer “i.” By using the

Maxwell’s equation H
ið Þ
tot ¼ iωμ0

� ��1
∇�E

ið Þ
tot, and considering that the magnetic field may be

written as H
ið Þ
tot ¼ H

ið Þ xð Þ exp ikyyþ ikzz� iωt
� �

, we finally obtain the following expression for

the variation of the field along the x direction, namely:

ωμ0H
ið Þ xð Þ ¼ Aoiĉoi exp ikoi x� xið Þ½ � þ Boid̂oi exp �ikoi x� xið Þ½ �

þ Aeiĉei exp ikei x� xið Þ½ � þ Beid̂ei exp �ikei x� xið Þ½ �:
(13)

In the previous equations, the new vector fields are set as

ĉoi ¼ � koikz; kykz; k
2
z � Exik

2
0

� �

, (14a)

ĉei ¼ Exik
2
0 �ky; kei; 0
� �

, (14b)
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d̂oi ¼ � �koikz; kykz; k
2
z � Exik

2
0

� �

, (14c)

d̂ei ¼ �Exik
2
0 ky; kei; 0
� �

: (14d)

We point out that the vector fields ĉoi and d̂oi can be given in units of k20, whereas ĉei and d̂ei can

be expressed in units of k30.

2.3.2. Boundary conditions for anisotropic layered media

Once we have a complete description of the wave fields in every elementary layer of our

metamaterial, we have to impose some boundary conditions at the interfaces x ¼ xi. The

components of the electric field E
ið Þ
tot and the magnetic field H

ið Þ
tot lying on the planes x ¼ xi must

be continuous. Particularly these boundary conditions may be expressed in a matrix form as

Divi ¼ Diþ1v
0
iþ1: (15)

We defined the following matrix, explicitly given as

Di ¼

koi �koi kykz kykz

0 0 k2z � Exik
2
0 k2z � Exik

2
0

�kykz �kykz Exik
2
0kei �Exik

2
0kei

�k2z þ Exik
2
0 �k2z þ Exik

2
0 0 0

2

6

6

6

6

4

3

7

7

7

7

5

: (16)

On the other hand, we introduced the amplitude column vectors

vi ¼

Aoi

Boi

Aei

Bei

2

6

6

6

4

3

7

7

7

5

, v0 i ¼

A0
oi

B0
oi

A0
ei

B0
ei

2

6

6

6

4

3

7

7

7

5

: (17)

The matrix formulation can also be used to relate the amplitude vector vi with zero-phase shift

at x ¼ xi with the amplitude vector v
0
i exhibiting zero dephase at x ¼ xi�1, previously

established in Eq. (12a), (12b). For that purpose, we introduce the propagation matrix Pi, which

takes into account the amplitude dephasing between the boundaries of each layer. Explicitly

we may write

v
0
i ¼ Pi � vi, (18)

being

Pi ¼

e�ikoiwi 0 0 0

0 eikoiwi 0 0

0 0 e�ikeiwi 0

0 0 0 eikeiwi

2

6

6

6

4

3

7

7

7

5

, (19)
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where wi ¼ xi � xi�1 denotes the width of the elementary layer “i:” We note that equivalent

matrix formulations for anisotropic multilayered media can be found elsewhere [6, 7].

2.3.3. Electromagnetic fields in layered isotropic media

At this point, once we have described the electromagnetic fields in uniaxial media, let us study

a multilayered media composed of isotropic materials. Considering an isotropic medium of

relative permittivity Ei, once again, the projection of the wave vector along the positive x

direction is set as

kTEi ¼ kTMi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eik
2
0 � k2y þ k2z

� �

r

: (20)

Formally, kTMi applies to TM-polarized waves and kTEi corresponds to TE-polarized waves. The

total electric field of the elementary layer “i” can be set, again, as given in Eq. (7). The part of

the electric field that varies along with the spatial coordinate x can be written using the

amplitude ATEi (and ATMi), which corresponds to propagating TE (and TM) waves and BTEi

(and BTMi) that is related with counter-propagating TE (and TM) waves. This finally reads as

E
ið Þ xð Þ ¼ ATEi âTEi exp ikTEi x� xið Þ½ � þ BTEi b̂TEi exp �ikTEi x� xið Þ½ �

þ ATMi âTMi exp ikTMi x� xið Þ½ � þ BTMi b̂TMi exp �ikTMi x� xið Þ½ �:
(21)

Note that all these amplitudes have zero dephase at x ¼ xi. Finally, the vectors âTEi and âTMi are

given in Eq. (3a), (3b) by ê1 and ê2, respectively, which we rewrite as

âTEi ¼ b̂TEi ¼ 0; kz;�ky
� �

, (22a)

âTMi ¼ k2y þ k2z ;�kykTMi;�kzkTMi

� �

, (22b)

b̂TMi ¼ k2y þ k2z ; kykTMi; kzkTMi

� �

: (22c)

In Eq. (22a) and (22c) we have included the field vectors b̂TEi and b̂TMi which are associated

with counter-propagating waves. Again, we point out that the vector fields âTEi and b̂TEi can be

given in units of k0, and the vectors âTMi and b̂TMi can be expressed in units of k20. Similarly as

performed in the previous section, the field function E
ið Þ can also be set in terms of the wave

amplitudes A0
TEi, A

0
TEi, B

0
TMi, and B0

TMi with zero dephase at x ¼ xi�1. As in the previous

section, the amplitudes Aqi, A0
qi, Bqi, and B0

qi, where q ¼ TE;TMf g, are related by

A0
qi ¼ Aqi exp �ikqiwi

� �

and B0
qi ¼ Bqi exp ikqiwi

� �

. Following the same procedure seen earlier,

we calculate the magnetic field in every elementary layer “i.” We finally obtain the following

expression for the variation of the field along the x direction, namely

ωμ0H
ið Þ xð Þ ¼ ATEi ĉTEi exp ikTEi x� xið Þ½ � þ BTEi d̂TEi exp �ikTEi x� xið Þ½ �

þ ATMi ĉTMi exp ikTMi x� xið Þ½ � þ BTMi d̂TMi exp �ikTMi x� xið Þ½ �:
(23)
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In the previous equation we introduced the vector fields

âTEi ¼ b̂TEi ¼ 0; kz;�ky
� �

, (24a)

âTMi ¼ �ĉTEi ¼ � �k2y � k2z ; kykTEi; kzkTEi

� �

, (24b)

b̂TMi ¼ �d̂TEi ¼ k2y þ k2z ; kykTEi; kzkTEi

� �

, (24c)

ĉTMi ¼ d̂TMi ¼ Eik
2
0 0; kz;�ky
� �

: (24d)

Note that ĉTMi ¼ Eik
2
0âTEi. We conclude that the amplitudes ATEi and B0

TEi are associated with

TE-polarized waves along the x-axis, that is, TEx waves, and ATMi and B0
TMi are field ampli-

tudes of TMx waves.

2.3.4. Application of the boundary conditions

At a given interface x ¼ xi, the electromagnetic fields should accomplish the continuity bound-

ary conditions. Note that we can write the four equations derived from the boundary condi-

tions in the following matrix form:

Divi ¼ Diþ1v
0
iþ1: (25)

In the previous matrix equation, we introduced the element

Di ¼

kz kz �kykTMi kykTMi

�ky �ky �kzkTMi kzkTMi

kykTEi �kykTEi Eik
2
0kz Eik

2
0kz

kzkTEi �kzkTEi �Eik
2
0ky �Eik

2
0ky

2

6

6

6

6

4

3

7

7

7

7

5

: (26)

Finally, the amplitude vectors now are represented as

vi ¼

ATEi

BTEi

ATMi

BTMi

2

6

6

6

4

3

7

7

7

5

, v0 i ¼

A0
TEi

B0
TEi

A0
TMi

B0
TMi

2

6

6

6

4

3

7

7

7

5

: (27)

The matrix formulation can also be used to relate the amplitude vector vi with zero-phase shift

at x ¼ xi with the amplitude vector v0i exhibiting zero dephase at x ¼ xi�1. For that purpose,

we introduce the propagation matrix for the TEx and TMx modes

Pi ¼

e�ikTEiwi 0 0 0

0 eikTEiwi 0 0

0 0 e�ikTMiwi 0

0 0 0 eikTMiwi

2

6

6

6

4

3

7

7

7

5

, (28)
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which takes into account the amplitude phase shift due the finite width wi ¼ xi � xi�1 of each

layer. Explicitly we will write v0 i ¼ Pi � vi, which is formally the same as Eq. (18), previously

derived for uniaxial media.

3. Surface modes in isotropic media

The main purpose of this chapter is the analysis of Dyakonov surface waves, which originally

was formulated for an isotropic medium and a uniaxial crystal. However, this analysis is

developed in Section 5. Here we introduce the most well-known surface waves arisen at the

interface between isotropic media of different dielectric constants. In addition, these surface

waves will play a relevant role when dealing with metal-dielectric multilayered structures.

The so-called surface plasmon polaritons are waves that propagate along the surface of a

conductor, usually a metal [2, 8, 9]. These are essentially light waves that are trapped on the

surface, evanescently confined in the perpendicular direction and caused by their interaction

with the free electrons of the conductor, the latter oscillating in resonance with the electromag-

netic field. To describe these wave fields, we use the matrix formalism applied in the vicinity of

a single interface between two isotropic media with different dielectric permittivities.

Let us consider the propagation of bound waves on the interface between two semi-infinite

media, which are denoted as medium 1 and medium 2 with dielectric permittivities E1 i E2,

respectively. This interface is located at x1 ¼ 0. For medium 1, the electric and magnetic fields

varying along the x-axis are given by Eqs. (22a), (22b), (22c) and (24a), (24b), (24c), (24d)

respectively.

As we are only interested in bound states; the elements of the remaining field vectors read as

v1 ¼

0

BTE1

0

BTM1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

and v02 ¼

A0
TE2

0

A0
TM2

0

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

: (29)

The values of the amplitudes ATE1, ATM1, B
0
TE2, and B0

TM2 are identically zero in case of lack of

interaction with external sources, as we assume here. Since we are dealing with bound states,

the wavenumbers kTE1, kTM1, kTE2, , and kTM2 are purely imaginary. The application of the

boundary conditions, D1v1 ¼ D2v
0
2, gives us the following two equations:

0 ¼
E2kTM1 þ E1kTM2

2E1kTM1
A0

TM2, (30a)

BTM1 ¼
E2kTM1 � E1kTM2

2E1kTM1
A0

TM2: (30b)
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To accomplish Eq. (30a), the following equation must be satisfied, kTM2=kTM1 ¼ �E2=E1. This is

the dispersion equation of the TMx-polarized surface modes. As kTM1 and kTM2 have a

vanishing real part and a positive imaginary part, this requires that E2=E1 < 0, that is, one of

the relative permittivities must be negative. Once we have obtained the relationship between

the relative permittivities and the purely imaginary wavenumbers, we may obtain a new

ligature involving the field amplitudes, BTM1 ¼ E2=E1ð ÞA0
TM2, which have been derived from

Eq. (30b). We may rewrite the dispersion equation, making use of the definition of kTMi given in

Eq. (20), resulting:

kSPP ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1E2

E1 þ E2

r

, (31)

where kSPP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2y þ k2z

q

is the SPP wavenumber. In Figure 2 we represent Eq. (31) giving the

dispersion relation for TM-bounded modes at frequencies lower than the surface plasmon

frequency:

ωSPP ¼ ωp
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ E1

p : (32)

At ω! 0 the SPP wavenumber tends to zero; however, when ω! ωSPP we find that kSPP ! ∞.

In addition, radiative modes may arise at higher frequencies, typically ω ≥ωp; in such cases, the

wave field is not confined near the interface and it will lose its energy by radiation.

Figure 2. SPP dispersion relation at the interface between a lossless Drude metal (E2 ωð Þ ¼ 1� ω2
p=ω

2) and a dielectric: air

in blue (E1 ¼ 1) and GaAs in red (E1 ¼ 11:55). Note that kp ¼ ωp=c.
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4. Multilayered plasmonic lattices

Wave propagation in periodic media can be treated as the motion of electrons in crystalline

solids. In fact, formulation of the Kronig-Penney model used in the elementary band theory of

solids is mathematically identical to that of the electromagnetic radiation in periodic layered

media. Thus, some of the physical concepts used in material physics such as Bloch waves,

Brillouin zones, and forbidden bands can also be used here. A periodic layered medium is

equivalent to a one-dimensional lattice that is invariant under lattice translation.

Here we will treat the propagation of electromagnetic radiation in a simple periodic layered

medium that consists of alternating layers of transparent nonmagnetic materials with different

electric permittivities. The layers are set in a way that the x-axis points along the perpendicular

direction of the layers. The permittivity profile is given by E1, for x0 < x < x1, and E2, for

x1 < x < x2. In addition, the relative permittivity satisfies the condition of periodicity,

E xð Þ ¼ E xþ Λð Þ, where w1 ¼ x1 � x0 w2 ¼ x2 � x1ð Þ is the thickness of the layers of permittivity

E1 E2ð Þ and Λ ¼ w1 þ w2 represents the period of the structure.

According to the Floquet theorem, solutions of the wave equation for a periodic medium may

be set in the form E iþ2ð Þ xþ Λð Þ ¼ E ið Þ xð Þ � exp iKΛð Þ. The constant K is known as the Bloch

wavenumber. The problem is thus that of determining K and E ið Þ xð Þ. Finally, the equation

cos KqΛ
� �

¼
1

2
trq: (33)

represents the dispersion relation for TE and TMmodes, written in a compact way. Representing

KTE (KTM), the Bloch wavenumber K associated with the mode TE (TM), and writing

trTE ¼ 2 cos w1kTE1ð Þ cos w2kTE2ð Þ �
k2TE1 þ k2TE2
� �

kTE1kTE2
sin w1kTE1ð Þ sin w2kTE2ð Þ, (34a)

trTM ¼ 2 cos w1kTM1ð Þ cos w2kTM2ð Þ �
E
2
2k

2
TM1 þ E

2
1k

2
TM2

� �

E1E2kTM1kTM2
sin w1kTM1ð Þ sin w2kTM2ð Þ: (34b)

we find the dispersion equation of a binary periodic medium for each polarization.

Neglecting losses in the materials, regimes where ∣trq∣ < 2 correspond to real Kq and thus to

propagating Bloch waves, when ∣trq∣ > 2; however, Kq ¼ mπ=Λþ iKqi, wherem is an integer and

Kqi is the imaginary part of Kq, which gives an evanescent behavior to the Bloch wave. These are

the so-called forbidden bands of the periodic medium. The band edges are set for ∣trq∣ ¼ 2.

In Figure 3, the transverse wavenumber reads as

kt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2y þ k2z

q

: (35)

For ultra-thin metallic layers, for instance, wm ¼ 3 nm, the curves resembles ellipses and

circumferences for TM and TE modes, respectively. In the particular case of TM modes, a

secondary curve surges, in relation with the excitation of SPPs. For increasing values of the
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metal width, some deviations are evident. Reaching a given value of wm, a large band gap

centered at kt ¼ 0 surges. Particularly for TM modes, at KTM ¼ 0, the two curves collapse. This

fact may be understood as that the symmetric and antisymmetric surface modes in the metallic

layer approach for SPP in a single metal-dielectric interface, giving kt ! kSPP [see Eq. (31)]. For

illustration, the wavenumber of the SPP propagating on the interface of our Drude metal/GaAs

materials yields kSPP ¼ 0:746 � 2π=Λ, assuming that Λ ¼ 325nm (associated with the period of

a multilayer with metal thickness wm ¼ 25 nm).

4.1. Effective medium approach

For near-infrared and visible wavelengths, nanolayered metal-dielectric compounds enable a

simplified description of the medium by using the long-wavelength approximation, which

involves a homogenization of the structured metamaterial [10, 11]. The effective medium

approach (EMA), as Rytov exposed in his seminal paper [12], involves representing MD multi-

layered metamaterial as an uniaxial plasmonic crystal, whose optical axis is normal to the layers

(in our case, the x-axis is the optical axis), a procedure that requires the metallic elements to have

a size of a few nanometers. This is caused by the fact that transparency of noble metals is

restrained to a propagation distance not surpassing the metal skin depth. In Ref. to this point,

recent development of nanofabrication technology makes it possible to create such subwave-

length structures. Under this condition, the plasmonic lattice behaves as a uniaxial crystal

characterized by a relative permittivity tensor e ¼ E∥ x⊗ xð Þ þ E⊥ y⊗ yþ z⊗ zð Þ, where

E∥ ¼
E1E2

1� fð ÞE2 þ f E1
, (36)

gives the permittivity along the optical axis, and E⊥ ¼ 1� fð ÞE1 þ f E2 corresponds to the per-

mittivity in the transversal direction. In the previous equations, f ¼ w2= w1 þ w2ð Þ, denotes the

Figure 3. Exact dispersion curves derived from Eq. (33) for a lossless Drude metal/GaAs composite medium with

λ ¼ 1:55μ m, ωp ¼ 13:94fs�1 and E1 ¼ 11:55, for (a) TM modes and (b) TE modes. GaAs layer is always 12 times thicker

than the metallic layer.
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filling factor of medium “2” providing the metal rate in a unit cell. The dispersion equations

given by the EMA are k2x þ k2t ¼ E⊥k
2
0, corresponding to TE (o-) waves, where kx represents the

Bloch wavenumber KTE, and for TM (e-) waves, we have

k2x
E⊥

þ
k2t
E∥

¼ k20, (37)

being now kx, the Bloch wavenumber KTM.

The validity of the EMA is related on the assumption that the period Λ is much shorter than the

wavelength, that is, Λ≪λ0. Apparently, Eq. (33) is in good agreement with the EMA in the

vicinity of kx ¼ 0 for TMx waves only. In contrast, propagation along the x-axis, where

ky ¼ kz ¼ 0, results in large discrepancies. Even small-filling factors of the metallic composite

lead to enormous birefringences. Such metamaterials enlarge the birefringence of the effective-

uniaxial crystal at least in one order of magnitude in comparison with values shown in Table 1.

However, the size of birefringence displayed by extraordinary waves is reduced if w2

increases. On the other hand, the isotropy of the isofrequency curve is practically conserved

for ordinary waves.

4.2. Hyperbolic media

As we have seen in Section 3.3, nanolayered metal-dielectric compounds behave like

plasmonic crystals enabling a simplified description of the medium by using the long-

wavelength approximation [10–12]. Under certain conditions, the permittivity of the medium

set in the form of a second-rank tensor includes elements of opposite signs, leading to a

metamaterial of extreme anisotropy [13, 14]. This class of nanostructured media with hyper-

bolic dispersion is promising metamaterials with a plethora of practical applications from

biosensing to fluorescence engineering [15].

Type I hyperbolic media refers to a special kind of uniaxially anisotropic media, that can be

described by a permittivity tensor where element E∥ is negative and E⊥ is positive. In this case,

Eq. (37) leads to a two-sheet hyperboloid. Type II hyperbolic media lead to positive E∥ and

negative E⊥, and Eq. (37) gives us a one-sheet hyperboloid [16]. The fulfillment of hyperbolic

dispersion allows wave propagation over a wide spatial spectrum that would be evanescent in

an ordinary isotropic dielectric. At the optical range, hyperbolic media can bemanufactured with

metal-dielectric multilayers or metallic nanowires. Multilayered hyperbolic metamaterials at an

optical range take advantage of the wide frequency band in which metals exhibit negative

permittivity and support plasmonic modes.

The system under analysis is a periodic binary medium, where we take as medium 1 a

transparent dielectric medium that is ideally nondispersive. In our three numerical simulations

we take a lossless Drude metal where its permittivity is E2 ¼ 1�Ω
�2 and dielectric media with

permittivities: (a) E1 ¼ 1, (b) E1 ¼ 2:25 and (c) E1 ¼ 11:55. Note that frequencies can be

expressed in units of the plasma frequency, Ω ¼ ω=ωp.
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In Figure 4(a), we represent the permittivities E∥ and E⊥ of our plasmonic crystals for a wide

range of frequencies. Note that the metal-filling factor takes control on the dissipative effects in

the metamaterial; accordingly low values of f are of great convenience. We set f ¼ 1=4 in our

numerical simulations. For low frequencies, Ω≪ 1, the following approximations can be used:

E⊥ ≈ f E2 < 0 and 0 < E∥ ≈ E1= 1� fð Þ. Therefore, propagating TEx modes (Ex ¼ 0) cannot exist in

the bulk crystal since it behaves like a metal in these circumstances. On the other hand, TMx

waves propagate following the spatial dispersion curve of Eq. (37). This is a characteristic of

Type II hyperbolic media. As mentioned earlier, Eq. (37) denotes a hyperboloid of one sheet

(see Figure 4(b) for Ω ¼ 0:20).

Furthermore, the hyperbolic dispersion exists up to a frequency

Ω1 ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ E1 1� fð Þ=f
p , (38)

for which E⊥ ¼ 0. For slightly higher frequencies, both E∥ and E⊥ are positive and Eq. (37)

becomes an ellipsoid of revolution. Since its minor semi-axis is Ω
ffiffiffiffiffi

E⊥

p
, the periodic multilayer

simulates a uniaxial medium with positive birefringence. Raising the frequency even more, E∥
diverges at

Ω2 ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ E1f = 1� fð Þ
p , (39)

leading to the so-called canalization regime. In general, Ω1 < Ω2 provided that f < 1=2.

Beyond Ω2, Eq. (37) turns to a hyperboloidal shape. In the range Ω2 < Ω < 1; however, the

dispersion curve has two sheets (Type I hyperbolic medium). Figure 4(c) illustrates this case.

Note that the upper limit of this hyperbolic band is determined by the condition E∥ ¼ 0 or in an

equivalent way, E2 ¼ 0, occurring at the plasma frequency.

Figure 4. (a) Variation of relative permittivities E∥ (blue solid line) and E⊥ (magenta solid line) as a function of normalized

frequency Ω, for the plasmonic crystal including a lossless Drude metal and fused silica (E1 ¼ 2:25) as dielectric material.

Ω1 and Ω2 yield 0.359 and 0.759, respectively. (b) and (c) plot Eq. (37) in the kxky plane for extraordinary waves (TMx

modes) for a plasmonic effective crystal, including a dielectric of permittivity E1 ¼ 2:25, in the range Ω < 1. Solid line

corresponds to kz ¼ 0 and shaded regions are associated with harmonic waves with kz > 0 (nonevanescent fields).
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5. Dyakonov surface waves

Dyakonov surface waves (DSWs) are another kind of surface waves, supported at the interface

between an optically isotropic medium and a uniaxial-birefringent material. In the original

work by Dyakonov (English version was reported in 1988 [3]), the optical axis of the uniaxial

medium was assumed in-plane with respect to the interface. This is the case we deal with here.

The importance of DSWs for integrated optical applications, such as sensing and nano-

waveguiding, was appreciated in a series of papers [17, 18]. Indeed Dyakonov-like surface

waves also emerge in the case that a biaxial crystal [19] or a structurally chiral material [20]

takes the place of the uniaxial medium. The case of metal-dielectric (MD) multilayers as

structurally anisotropic media is especially convenient since small-filling fractions of the

metallic inclusions enable metamaterials with an enormous birefringence, thus enhancing

density of DSWs and relaxing their prominent directivity [21–23].

5.1. Dispersion equation of DSWs

The system under study is the plotted in Figure 5, where we have two semi-infinite media, one

of them is isotropic and the second one is an MD lattice. In our case, the indices “1” and “2”

make reference to the plasmonic lattice and the isotropic medium, respectively. We have

previously reported a comprehensive analysis of this case in [4]. As we have seen earlier, the

plasmonic lattice can be taken as an effective uniaxial crystal. In this case, the permittivity

along its optical axis, Ez1 ¼ E∥, is given by Eq. (36); also, the permittivity in the transverse

direction Ex1 ¼ Ey1 ¼ E⊥ may be appropriately averaged. From hereon, the permittivity E2 of

the isotropic medium in x > 0 will be denoted by E. Note that our analysis serves for natural

birefringent materials characterized by permittivities E∥ and E⊥.

Figure 5. Schematic setup under study, consisting in a semi-infinite dielectric-metal superlattice x < 0ð Þ and an isotropic

substrate x > 0ð Þ.
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Since we treat the plasmonic lattice as a uniaxial crystal, we may establish analytically the

diffraction equation that gives the 2D wave vector kD ¼ 0; ky; kz
	 


in x ¼ 0. For that purpose, we

follow Dyakonov [3] by considering hybrid-polarized surface modes. In the isotropic medium

we consider TEx (Ex ¼ 0) and TMx (Hx ¼ 0) waves whose wave vectors have the same real

components ky and kz in the plane x ¼ 0. Therefore the electric field in both media may be set as

Etot ¼ E xð Þ exp ikyyþ ikzz� iωt
� �

: (40)

Moreover, these fields are evanescent in the isotropic medium and in the superlattice. In the

anisotropic medium (x < 0) the evanescent electric amplitude can be written as

E xð Þ ¼ Bo1 b̂o1 exp �iko1xð Þ þ Be1 b̂e1 exp �ike1xð Þ, (41)

where the ordinary and extraordinary waves in the effective uniaxial medium decay exponen-

tially with rates given by κo ¼ �iko1 and κe ¼ �ike1, respectively. Taking the formulation given

in Section 2.3.1, the amplitudes Ao1 and Ae1 are identically zero. In the isotropic medium

(x > 0) the amplitude of the electric field is

E xð Þ ¼ A0
TE2 âTE2 exp ikTE2xð Þ þ A0

TM2 âTM2 exp ikTM2xð Þ, (42)

where the evanescent decay for TE and TM modes is κ ¼ �ikTE2 ¼ �ikTM2. Now the ampli-

tudes B0
TE2 and B0

TM2 are zero.

Once we have the amplitudes in both sides of the interface, we apply the boundary conditions

at x ¼ 0,D1 � v1 ¼ D2 � v
0
2, whereD1 is provided by Eq. (16),D2 from Eq. (26), v1 from Eq. (17),

and v02 from Eq. (27). This equation reduces to:

0

Bo1

0

Be1

2

6

6

6

4

3

7

7

7

5

¼ Mh

A0
TE2

0

A0
TM2

0

2

6

6

6

4

3

7

7

7

5

, (43)

where the transmission matrixMh ¼ D
�1
1 �D2 establishes a relationship between the amplitudes

of hybrid polarizationmodes. Using the elementsMij of thematrixMh, and definingMi andMa as

Mi ¼
M11 M13

M31 M33

� �

¼

�
ikz κo þ κð Þ

2 k2z � k20E⊥
� �

k20ky Eκo þ κE⊥ð Þ

2κo k2z � k20E⊥
� �

�
κe þ κð Þky

2κe k2z � k20E⊥
� � �

ikz κκeE⊥ þ Eκ
2
o

� �

2κeE⊥ k2z � k20E⊥
� �

2

6

6

6

6

4

3

7

7

7

7

5

, (44a)

Ma ¼
M21 M23

M41 M43

� �

¼

ikz κo � κð Þ

2 k2z � k20E⊥
� �

k20ky Eκo � κE⊥ð Þ

2κo k2z � k20E⊥
� �

κ� κeð Þky

2κe k2z � k20E⊥
� � �

ikz κκeE⊥ � Eκ
2
o

� �

2κeE⊥ k2z � k20E⊥
� �

2

6

6

6

6

4

3

7

7

7

7

5

: (44b)
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Eq. (43) can be rewritten as a set of two independent matrix equations, namely

0

0

� �

¼ Mi �
A0

TE2

A0
TM2

" #

, (45a)

Bo1

Be1

� �

¼ Ma �
A0

TE2

A0
TM2

" #

: (45b)

Note that Mi governs the amplitudes A0
TE2 and A0

TM2 of the isotropic medium, and Ma (also

Mh) may be used to determine the amplitudes Bo1 and Be1 of the anisotropic medium.

Dyakonov equation is obtained by means of letting the determinant ofMi equal to zero, giving

k20k
2
yE⊥ κþ κeð Þ Eκo þ E⊥κð Þ ¼ κok

2
z κþ κoð Þ Eκ2

o þ E⊥κκe

� �

, (46)

which provides a spectral map of allowed values ky; kz
� �

. After fairly tedious algebraic trans-

formations we can reduce Eq. (46) to a more convenient form [3].

κþ κeð Þ κþ κoð Þ Eκo þ E⊥κeð Þ ¼ E∥ � E

� �

E� E⊥ð Þk20κo: (47)

Assuming that E∥, E⊥ and all decay rates are positive, the additional restriction E⊥ < E < E∥ can

be deduced for the existence of surface waves. As a consequence, positive birefringence is

mandatory to ensure a stationary solution of Maxwell’s equations. Therefore, layered

superlattices supporting Dyakonov-like surface waves cannot be formed by all dielectric mate-

rials [21].

5.2. DSWs in nano-engineered materials

To illustrate the difference between using conventional birefringent materials and plasmonic

crystals, we solve Eq. (47) for liquid crystal E7 with E∥ ¼ 2:98 i E⊥ ¼ 2:31 at a wavelength of

λ0 ¼ 1:55μ m and N-BAK1 substrate of dielectric constant E ¼ 2:42. In this case, DSWs propa-

gate in a narrow angular region Δθ ¼ θmax � θmin, where θ stands for the angle between the in-

plane vector ky; kz
� �

and the optical axis. More specifically, the angular range yields Δθ ¼ 0:92 ∘

around the mean angle θ ¼ 26:6 ∘ . It appears that the resulting angular range Δθ is short. But

this range would become much smaller when using other optical crystals like quartz,

exhibiting a common birefringence. In order to gain in angular extent Δθ, we consider a

GaAs-Ag crystal (E1 ¼ 12:5 and E2 ¼ �103:3, where we neglect losses) that leads to values of

E∥ ¼ 14:08, derived from Eq. (36), and E⊥ ¼ 0:92 with a metal-filling factor f ¼ 0:10. Form

birefringence now yields Δn ¼ 2:79. Moreover, solutions to Eq. (47) can be found in the region

of angles comprised between θmin ¼ 39:0 ∘ and θmax ¼ 71:3 ∘ . It is important to point out that

the total angular range of existence of DSWs, Δθ ¼ 32:3 ∘ , grows by more than an order of

magnitude. Figure 6 shows the dispersion curve for DSWs; one can observe that θmin is

attained under the condition κ ¼ 0 (red solid line), where TEx and TMx waves are uniform in
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the substrate x > 0. Looking at the other side of the dispersion curve, θmax is established by

ke ¼ 0, shown as a black solid line, for which the extraordinary wave will not decay spatially at

x ! �∞.

Consequently, the solution for Eq. (47) can be traced near the curves κ ¼ 0 and κe ¼ 0; thus,

DSWs are always found close to the crosspoint P0 ky0; kz0
� �

of both curves.

5.2.1. Nonlocal effects

As we discussed in Section 4.1, the EMA is limited to metallic slabs’ width wm ≪λ0. However,

this condition must be taken into account with care, since the skin depth of noble metals is

extremely short, δ ≈ c=ωp. For instance, we estimate δ ¼ 24 nm in the case of silver. If the metal

thickness is comparable to its skin depth, the EMA will substantially deviate from exact

calculations. Note that experimental studies from multilayer optics rarely incorporate metallic

slabs with a thickness below 10 nm.

We emphasize that moderate changes in the birefringence of the plasmonic crystal will sub-

stantially affect the existence of DSWs. More specifically, an enlargement of E⊥ driven by

increasing wm, provided f is fixed (see Section 4.1), will lead to a significant modification of

the DSW dispersion curves. Ultimately, this phenomenon is clearly attributed to nonlocal

effects in the effective-medium response of nanolayered metamaterials [24], which is associ-

ated with a strong variation of the fields on the scale of a single layer.

We conclude that, in order to excite DSWs, one may counterbalance the decrease of birefrin-

gence in the plasmonic lattice by means of a dielectric substrate of higher index of refraction.

To illustrate this matter, the dispersion Eq. (47) for DSWs is represented in Figure 7, in addition

to using the values of E∥ and E⊥ from nonlocal estimators [4]. When wm grows but f is kept

fixed, the dispersion curve of the Dyakonov surface waves tends to approach the optic axis.

Figure 6. Dispersion Eq. (47) for DSWs (dotted-dashed line) propagating on the interface of a semi-infinite dielectric-

metal lattice with metal filling factor f = 0.1. The solid elliptical line and the black dashed line are associated with

homogeneous extraordinary waves κe ¼ 0ð Þ and homogeneous ordinary waves κo ¼ 0ð Þ, respectively. The isofrequency

curve κ ¼ 0ð Þ of isotropic N-BAK1 are represented in by the red solid line, which applies for TEx and TMx waves.

Adapted with permission from [4] of copyright ©2013 IEEE photonics society.
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For an N-BAK1 substrate, as shown in Figure 7(a), θmax ¼ 68:2 ∘ and 58:7 ∘ for wm ¼ 3 nm and

6 nm, respectively. Also, θmin ¼ 37:6 ∘ and 32:1 ∘ for these two cases. As a consequence the

angular range Δθ shrinks whenwm increases. In the limit E⊥ ! E, which occurs forwm ¼ 10:3 nm

using a N-BAK1 substrate, DSWs are not supported at the interface of the MD lattice and the

isotropic dielectric. A substrate with greater relative permittivity E would be necessary. For

example, if we use a substrate with greater relative permittivity E as P-SF68 [see Figure 7(b)],

DSWs exist for wm ¼ 12 nm with an angular range Δθ ¼ 12:5 ∘ .

5.2.2. Dissipative effects

Up to now, we have avoided another important aspect of plasmonic devices namely dissipa-

tion in metallic elements. In this regard, effective permittivities are fundamentally complex,

and consequently the Dyakonov Eq. (47) is expected to give complex values of ky; kz
� �

. This

procedure has been discussed by Sorni et al. [25] recently. In order to tackle this problem, we

evaluate numerically the value of the Bloch wavenumber kz for a given real value ky. The

spatial frequency kz becomes complex since Im Em½ � ¼ 8:1. As a consequence, the surface wave

cannot propagate indefinitely, undergoing an energy attenuation given by l ¼ 2Im kz½ �ð Þ�1.

Furthermore, we naturally assume that the real part of the parameters κ,κo, and κe are all

positive. These positive values correlate with a decay at ∣x∣ ! ∞ and thus with a confinement

of the wave near x ¼ 0.

Figure 8(a) depicts the dispersion curve corresponding to dissipative DSWs, for the case of a

plasmonic MD lattice with f ¼ 0:10 and wm ¼ 12 nm. We used a commercial software

(COMSOL Multiphysics) based on the finite-element method (FEM) in order to perform our

numerical simulations. We cannot observe surface waves by setting an N-BAK1 substrate with

n ¼ 1:56, suggesting that this is a retardation effect. More specifically, Figure 8(a) shows the

isofrequency curves when n ¼ 1:95, corresponding to P-SF68.

Figure 7. Solutions to Dyakonov equation, drawn in dotted-dashed lines, for a MD lattice with the same filling factor

f ¼ 0:10 but different wm, using estimates from the nonlocal birefringence approach described in [4]. Note that the red

solid line designates the isofrequency curve of isotropic substrate (a) N-BAK1 and (b) P-SF68. Adapted with permission

from [4] of copyright ©2013 IEEE photonics society.
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We observe that the dispersion curve for dissipative DSWs is flatter and larger than the curve

obtained by neglecting losses. Specifically θmax ¼ 49:9 ∘ and θmin ¼ 23:7 ∘ , giving an angular

range Δθ ¼ 26:2 ∘ . Figure 8(b) shows Im(kz)/Re(kz) in the range of existence of the surface

waves. In these two figures, capital letters A, B, and C designate the transverse spatial frequen-

cies ky ¼ 0:8k0, 1:2k0, and 1:6k0, respectively. Figure 8(c) shows the magnetic field ∣Hx∣ for the

three different cases denoted by capital letters A, B, and C. Note that in the case of paraxial

surface waves, for which ky reaches a minimum value (case A), one achieves Im kzð Þ≪Re kzð Þ as

depicted in Figure 8(b). This is induced by an enormous shift undergone by the field maxi-

mum in the direction to the isotropic medium, as shown in Figure 8(c), where dissipation

effects are barely disadvantageous on surface-wave propagation. Moreover, this would be

consistent with a condition Re κð Þ≪Re κeð Þ. On the other hand, for nonparaxial waves, having

the largest values of ky, the fields show slow energy decay inside the plasmonic superlattice. In

case C, the magnetic field ∣Hx∣ is localized around the metallic layer and takes significant

values far from the boundary of the substrate. As a consequence, losses in the metal translate

into a significant rise in the values of Im(kz).

Figure 8. (a) Isofrequency curve that corresponds to hybrid surface waves existing at the boundary between a semi-

infinite P-SF68 substrate and a lossy MD superlattice of f ¼ 0:10 and wm ¼ 12 nm. (b) Ratio of Im(kz) over re(kz)

representing dissipation effects in the propagation of DSWs. (c) Three contour plots of the magnetic field ∣Hx∣ computed

using the finite-element method. The superlattice is set on the left, for which only one period is represented. Capital letters

a, B, and C, designate the transverse spatial frequencies ky ¼ 0:8k0, 1:2k0, and 1:6k0, respectively. Adapted with permis-

sion from [4] of copyright ©2013 IEEE photonics society.
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5.3. New families of DSWs in lossy media

In this section we carry out a thorough analysis of DSWs that takes place in lossy uniaxial

metamaterials. Special emphasis is put when the effective-medium approach induces satisfac-

tory results. The introduction of losses leads to a transformation of the isofrequency curves,

which deviates from spheres and ellipsoids, as commonly considered by ordinary and extraor-

dinary waves, respectively. As a consequence, one can find two different families of surface

waves as reported by Sorni et al. [25]. One family of surface waves is directly related with the

well-known solutions derived by Dyakonov [3]. Importantly, the existence of a new family of

surface waves is revealed, closely connected to the presence of losses in the uniaxial effective

crystal. We point out that the solutions to Dyakonov equation presented earlier are partial ones

insofar as the z-component of the wavevector is kept real valued. Nevertheless, the whole set

of solutions includes all possible wavevectors that feature a complex-valued kx.

6. Dyakonov surface waves in hyperbolic media

In this section we perform a thorough analysis of DSWs taking place in semi-infinite MD

lattices exhibiting hyperbolic dispersion. Part of this section was previously reported by

Zapata-Rodríguez et al. [26]; we point out that recently further studies on DSW in hyperbolic

metamaterials have been reported by other authors [27]. Our approach puts emphasis on the

EMA. Under these conditions, different regimes can be found including DSWs with

nonhyperbolic dispersion. The system under analysis is again as depicted in Figure 5. For

simplicity, we assume that dielectric materials are nondispersive; indeed, we set E ¼ 1 and

Ed ¼ 2:25 in our numerical simulations. Furthermore, Drude metals are included, and frequen-

cies will be expressed in units of its plasma frequency, Ω ¼ ω=ωp. Again, Dyakonov Eq. (47)

provides the spectral map of wave vectors kD ¼ 0; ky; kz
	 


. Note that in this section, spatial

frequencies will be expressed in units of kp.

In the special case of the surface wave propagation perpendicular to the optical axis (kz ¼ 0),

Eq. (47) reveals the following solution: Eκo þ E⊥κ ¼ 0. In the case: E⊥ < 0 and E < ∣E⊥∣, this

equation has the well-known solution

ky ¼ Ω

ffiffiffiffiffiffiffiffiffiffiffiffiffi

EE⊥

Eþ E⊥

r

, (48)

which resembles the dispersion equation of conventional SPPs [see Eq. (31)]. Here we have

purely TMx polarized waves, as expected. Note that no solutions to Eq. (47) can be found, in

the form of surface waves, considering wave propagation parallel to the optical axis (ky ¼ 0)

for hyperbolic metamaterials: E⊥E∥ < 0. That means that a threshold value of ky can be found

for the existence of surface waves.

Next we describe a specific configuration governing DSWs, subject to a low value of the

refractive index n ¼
ffiffi

E

p
, namely E < E∥ (E < E⊥) occurring at low and moderate frequencies;
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other cases are treated elsewhere [26]. In the effective-uniaxial medium, it is easy to realize that

κ < κo and also κe < κo. Under these circumstances, all brackets in Dyakonov Eq. (47) are

positive provided Eκo þ E⊥κe > 0. This happens within the spectral band Ω0 < Ω < Ω1, where

Ω0 ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ E=f þ Ed 1� fð Þ=f
p : (49)

Note that Ω0 ¼ 0:292 in our numerical simulation.

In Figure 9(a) and (b), we illustrate the dispersion equation of DSWs for two different frequen-

cies within the spectral range 0 < Ω < Ω0. In these cases, the dispersion curve approaches a

hyperbola. We find a bandgap around kz ¼ 0 in Figure 9(a), unlike what occurs in (b). Note

that hybrid solutions near kz ¼ 0 are additionally constrained to the condition ky ≥Ω
ffiffiffiffi

E∥
p

[see

also Eq. (48)], which is a necessary condition for κe to exhibit real and positive values. We

consider the quasi-static regime (Ω ! 0) where ∣kD∣ ¼ kD ≫Ω to determine the asymptotes of

the hyperbolic-like DSW dispersion curve. Under this approximation, κ ¼ kD, κo ¼ kD and

κe ¼ ΘkD, where

Θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos 2θþ E∥=E⊥
� �

sin 2θ

q

, (50)

being ky ¼ kD cosθ and kz ¼ kD sinθ. These asymptotes establish a canalization regime leading

to a collective directional propagation of DSW beams [4, 28]. At this point it is necessary to

remind that the asymptotes of the e-waves dispersion curve, in the kykz plane, have slopes

satisfying the condition θD < θe, as illustrated in Figure 9(b).

In the high-frequency bandΩ2 < Ω < 1 we find that E∥ < 0 < E⊥, as occurs in Figure 9(c). Note

the relevant proximity of DSW dispersion curve to κe ¼ 0, the same way we also find in

Figure 9(a) and (b). Conversely it crosses the e-wave hyperbolic curve at two different points,

Figure 9. Solutions to Eq. (47), drawn in solid line, providing the spatial dispersion of DSWs which can exist in the

arrangement of Figure 5, at different frequencies: (a)Ω ¼ 0:20, (b)Ω ¼ 0:28, and (c)Ω ¼ 0:85. Here, the isotropic medium

is air and the multi-layered metamaterial has a filling factor f ¼ 0:25 and. Also, we include equations κ ¼ 0 (dotted line)

and κe ¼ 0 (dashed line). Adapted with permission from [26] of copyright ©2013 Optical Society of America.
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where solutions to the Dyakonov equation begin and end, respectively. It is clear that the

angular range of DSWs now turns to be significantly low.

6.1. DSWs in band-gap hyperbolic media

In previous sections we demonstrated that the presence of metallic nano-elements leads to

nonlocal effects and dissipation effects which reshape the propagation dynamics of the surface

signal. Here, we briefly discuss the extraordinary favorable conditions which may appear in

band-gap metal–insulator-layered media for the existence of DSWs. As reported thoroughly

by Miret et al. [29], engineering secondary bands by tuning the plasmonic-crystal geometry

may lead to a controlled optical anisotropy, which is markedly dissimilar to the prescribed

hyperbolic regime that is derived by the EMA, however, assisting the presence of DSWs on the

interface between such hyperbolic metamaterial and an insulator.

In particular, a surface wave propagating on an Ag-Ge grating was considered, where the

environment medium that is set above the metallic grating is formed by SiO2. If the metal-

filling factor was f ¼ 0:25, the effective permittivities of the anisotropic metamaterial would be

estimated as E⊥ ¼ �11:48þ i2:05 and Ek ¼ 25:96þ i0:14 at a wavelength of λ0 ¼ 1550 nm.

Disregarding losses, the DSW dispersion curve describes an incomplete hyperbolic curve,

finding an endpoint under the condition κe ¼ 0, where the extraordinary wave breaks its

confinement in the vicinities of the isotropic-uniaxial interface [26].

Considering now a realistic nanostructure consisting of Ag layers of w2 ¼ 40 nm interspersed

between Ge layers of w1 ¼ 120 nm, thus maintaining a metal-filling factor of f ¼ 0:25 as

analyzed earlier, a first TM band with hyperbolic-like characteristics dominates at high in-

plane frequencies kt. Additionally, a second band emerges for TM Bloch modes, which exhibits

a moderate anisotropy, demonstrating near-elliptical dispersion curves (with positive effective

permittivities) and positive birefringence. Furthermore, TE modal dispersion is roughly isotro-

pic. Therefore, satisfactory conditions are found near the second TM band for the existence of

Dyakonov-like surface waves. Finally, in order to numerically obtain the dispersion curves and

wave fields associated with DSWs, one may follow the same computational procedure

followed by Zapata-Rodríguez et al. and [4, 26].

7. Summary

In this chapter we provide several methods to analytically calculate and numerically simulate

modal propagation of DSWs governed by material anisotropy. We focused on the spatial

properties of DSWs at optical and telecom wavelengths, particularly using uniaxial meta-

materials formed of dielectric and metallic nanolayers. We developed an electromagnetic

matrix procedure enabling different aspects reviewed in this chapter, specially adapted to

complex multilayered configurations. The EMA results are particularly appropriate for the

characterization of the form birefringence of a multilayered nanostructure, though limitations

driven by the layers width have been discussed. Through a rigorous full-wave analysis, we
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showed that hybrid-polarized surface waves may propagate obliquely at the boundary
between a plasmonic bilayer superlattice and an isotropic loss-free material. We revealed that
realistic widths of the slabs might lead to solutions which deviate significantly from the results
derived directly from the EMA and Dyakonov analysis. Finally, we showed that excitation of
DSWs at the boundary of an isotropic dielectric and a hyperbolic metamaterial enables a
distinct regime of propagation. It is important to note that the properties of the resulting
bound states change drastically with the index of refraction of the surrounding medium,
suggesting potential applications in chemical and biological sensing and nanoimaging.

This chapter was supported by the Qatar National Research Fund (Grant No. NPRP 8-028-1-
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