595 research outputs found

    Thermal enhancement of upconversion emission in nanocrystals: a comprehensive summary

    Get PDF
    Luminescence thermal stability is a major figure of merit of lanthanide-doped nanoparticles playing an essential role in determining their potential applications in advanced optics. Unfortunately, considering the intensification of multiple electron-vibration interactions as temperature increases, luminescence thermal quenching of lanthanide-doped materials is generally considered to be inevitable. Recently, the emergence of thermally enhanced upconversion luminescence in lanthanide-doped nanoparticles seemed to challenge this stereotype, and the research on this topic rapidly aroused wide attention. While considerable efforts have been made to explore the origin of this phenomenon, the key mechanism of luminescence enhancement is still under debate. Here, to sort out the context of this intriguing finding, the reported results on this exciting topic are reviewed, and the corresponding enhancement mechanisms as proposed by different researchers are summarized. Detailed analyses are provided to evaluate the contribution of the most believed ‘‘surface-attached moisture desorption’’ process on the overall luminescence enhancement of lanthanide-doped nanoparticles at elevated temperatures. The impacts of other surface-related processes and shell passivation on the luminescence behaviour of the lanthanide-doped materials are also elaborated. Lack of standardization in the reported data and the absence of important experimental information, which greatly hinders the cross-checking and reanalysis of the results, is emphasized as well. On the foundation of these discussions, it is realized that the thermal-induced luminescence enhancement is a form of recovery process against the strong luminescence quenching in the system, and the enhancement degree is closely associated with the extent of luminescence loss induced by various quenching effects beforehand.publishe

    Demand, supply and markup fluctuations

    Get PDF
    Markup cyclicality has been central for debating policy effectiveness and understanding business cycle fluctuations. However, there are two empirical challenges: separating supply (TFP) from demand shocks, and properly measuring the markups. In this article, we use a panel of Portuguese manufacturing firms for 2004-2014. Since it contains information on product- level prices, we can separate supply from demand shocks. We overcome the markup measurement by using the share of intermediate inputs on revenues, instead of the labor share. Our results suggest that markups are pro-cyclical with TFP shocks, and counter-cyclical with demand shocks. We also show that labor-based markups are pro-cyclical.info:eu-repo/semantics/publishedVersio

    Usando a Luz para Medir Temperatura

    Get PDF
    As exigências tecnológicas atuais em micro e nanoeletrónica, fotónica, micro e nanofluídica e biomedicina, entre outras áreas, atingiram um ponto em que a utilização de termómetros convencionais de contacto é incapaz de efetuar medições com resolução espacial na escala submicrométrica. O desenvolvimento de novas sondas térmicas de monitorização remota é, então, inevitável, o que tem contribuindo para a época expansionista da termometria de luminescência que estamos a atravessar. Em particular, a termometria de luminescência baseada em iões lantanídeos (trivalentes) tornou -se muito popular desde 2010 devido às características intrínsecas destes iões, onde se destacam a versatilidade e estabilidade da sua emissão de luz cobrindo todo o espectro eletromagnético com rendimentos quânticos relativamente elevados. Neste artigo, apresentamos uma visão geral do campo desde os seus primórdios na década de 1950 até aos desenvolvimentos mais recentes. O movimento atual para a utilização da técnica como ferramenta para a imagem térmica, deteção precoce de tumores e como ferramenta para desvendar propriedades dos próprios termómetros ou do seu ambiente local é, também, resumidamente discutido.info:eu-repo/semantics/publishedVersio

    Estudo da resposta de um dosímetro eletrónico individual

    Get PDF
    Introdução – A monitorização da exposição ocupacional a doses de radiação ionizante pode ser complementada por dosímetros eletrónicos individuais que permitem uma leitura direta da dose de radiação recebida. Dada a dependência energética e de débito de dose já reportada para estes dosímetros, este trabalho pretende determinar a linearidade da resposta de um dosímetro eletrónico individual e estudar o comportamento da sua resposta em função da energia de radiação e do débito de dose. Metodologia – Para estudar a dependência da energia da radiação do dosímetro eletrónico pessoal Vertec Bleeper Sv procedeu‑se à sua irradiação com um equivalente de dose individual, Hp(10), de 500 μSv de radiação gama do Cobalto – 60 (60C) e Césio – 137 (137Cs) e das qualidades de radiação X da série Narrow (N): N‑30, N‑40, N‑60, N‑80, N‑100 e N‑120. Para investigar a dependência da resposta em função do débito de dose aplicaram‑se à ampola de raios X as intensidades de corrente elétrica de 1 mA, 5 mA, 10 mA, 15 mA e 20 mA. Resultados – Não existe uma relação entre a resposta do detetor e a energia de radiação a que este é exposto. Ocorre uma subestimação superior a 50% na grandeza medida para energias inferiores a 33 keV, mas ostenta uma medida relativamente linear da grandeza Hp(10) para doses inferiores a 100 μSv. Também se constata que, à medida que o débito de dose aumenta, existe uma diminuição na resposta do dosímetro. O menor decréscimo na resposta deste dosímetro eletrónico individual dá‑se para as qualidades de radiação N‑30 (1,1%), N‑40 (4,1%) e N‑120 (20,0%). Conclusão – Verifica‑se que a resposta do dosímetro individual Vertec Bleeper Sv depende fortemente da energia da radiação e do débito de dose. ABSTRACT: Introduction – The measurement of occupational exposure to radiation doses can be completed with an electronic personal dosemeter that allows a direct reading and alarm function of the received radiation dose. Due to the energy and dose rate dependence already reported for this type of dosemeter, it is intended, with this work, to determine the response linearity of an Electronic Personal Dosemeter and to study its response behavior to the dose rate and radiation energy. Methodology – The electronic personal dosemeter Vertec Bleeper Sv energy dependency was evaluated by its irradiation with 500 μSv from the radionuclides Cobalt – 60 (60C) and Cesium – 137 (137Cs) as well as by the radiation qualities of the Narrow (N) series: N‑30, N‑40, N‑60, N‑80, N‑100 e N‑120. To investigate the dose rate dependency, the intensities of electric current of 1 mA, 5 mA, 10 mA, 15 mA and 20 mA were applied to the X‑ray tube. Results – There is no relationship between the response of the detector and the radiation energy. For energies below 33 keV there is an underestimation over 50% of the radiation dose measured but the detector presents a linear response for energies under 100 μSv. A dependency on the dose rate is perceived since as the dose rate increases, the response of the individual monitor decreases. There is a smaller decrease for the radiation qualities of N‑30 (1.1%), N‑40 (4.1%) and N‑120 (20.0%). Conclusion – It is concluded that there is a strong dependence of radiation energy and dose rate on the response of an electronic personal dosemeter

    Study of the detection efficiency of a surface contamination monitor according to the distance and the surface emission rate

    Get PDF
    Introdução – No caso de uma eventual contaminação radioativa esta deve ser quantificada, pelo que é necessário garantir que as condições de funcionamento de um monitor de contaminação de superfícies se encontrem adequadamente caracterizadas, através da determinação da sua eficiência de deteção. Este estudo tem como objetivo determinar a eficiência de deteção de um monitor de contaminação e analisar a influência da distância e da atividade. Metodologia – O monitor de contaminação Thermo Mini 900E e as fontes radioativas planas de referência de Carbono – 14 (C-14), Césio – 137 (Cs-137), Estrôncio – 90 (Sr-90), Cloro – 36 (Cl-36) e Amerício – 241 (Am-241) com débito de emissão superficial rastreável ao Physikalish Technischen Bundesanstalt (PTB) foram utilizadas. Fontes de Sr-90 e C-14 com dois débitos de emissão distintos para cada e distâncias de 1 a 20mm foram usados para estudar a sua influência na eficiência de deteção. Resultados – Verificou-se que as fontes radioativas emissoras de partículas de maior energia apresentam uma maior eficiência de deteção e que esta diminui com o aumento da distância do detetor à fonte, sendo que os radioisótopos de maior energia apresentam um decréscimo na eficiência de 15% ao longo de 20mm, enquanto os radioisótopos de menor energia apresentam um decréscimo de 10%. Não se verificou uma influência expressiva do débito de emissão na eficiência de deteção deste monitor de contaminação. Conclusão – A eficiência de deteção de um monitor de contaminação portátil é dependente da distância deste à contaminação bem como do tipo de radiação emitida e energia dos radioisótopos presentes na contaminação. - ABSTRACT - Introduction – A radioactive contamination needs to be quantified in case it eventually occurs. Therefore it is necessary to ensure that the operating conditions of a surface contamination monitor are characterized by determining its detection efficiency. This experimental study aims to determine the detection efficiency of a contamination monitor and evaluate the distance and surface emission rate influence on the detection efficiency. Methodology – A contamination monitor Thermo Mini 900E was tested with reference radiation sources of Carbon – 14 (C-14), Cesium – 137 (Cs-137), Strontium – 90 (Sr-90), Chlorine – 36 (Cl-36) and Americium – 241 (Am-241) with its emission rate traced to the Physikalish Technischen Bundesanstalt (PTB). Sources of Sr-90 and C-14 with two different emission rates for each one and distances of 1 to 20mm were used to study its influence in the detection efficiency. Results – With the increasing of distance, the detection efficiency decreases. The most energetic radiation sources have higher detection efficiency, boasting a 15% decrease over 20mm whereas the sources bearing a smaller efficiency decrease 10%. No influence of the surface emission rate in the detection efficiency was verified. Conclusion – Thus, it is concluded that the detection efficiency of a contamination monitor is dependent of the distance between it and the contamination as well as the type and energy of the radioisotopes present in the contamination

    Experimental study of a hybrid solar photovoltaic, thermoelectric and thermal module

    Get PDF
    Nowadays, solar energy, which can be photovoltaic and thermal, is a clean and reliable source of energy for the production of electric and thermal power. However, new ways for improving photovoltaic efficiency are fundamental for an extensive application of this technology. Most of the energy absorbed by the PV panel converts itself into heat, which usually is lost and does not have any energetic value. The performance of a combined photovoltaic (PV), thermoelectric generator (TEG) and water heating panel is tested in practice. The thermoelectric set is applied on the back of the PV panel so that the two devices have approximately the same temperature. On the other face of the thermoelectric set, there is the water heating panel, which consists of an aluminium heat exchanger specially designed for this hybrid module. The exposed surface of the hybrid panel has an area of about 2.72 dm2. Experimental tests were conducted in direct solar exposure during July. The experimental results indicate that the maximum global module efficiency was 91.3% for an irradiance of 1089 W/m2. The power peak production was 29.7 W, at 2 p.m., with an irradiance value of 1230 W/m2.info:eu-repo/semantics/publishedVersio

    Upconverting nanoparticles as primary thermometers and power sensors

    Get PDF
    Luminescence thermometry is a spectroscopic technique for remote temperature detection based on the thermal dependence of the luminescence of phosphors, presenting numerous applications ranging from biosciences to engineering. In this work, we use the Er3+ emission of the NaGdF4/NaGdF4:Yb3+,Er3+/NaGdF4 upconverting nanoparticles upon 980 nm laser excitation to determine simultaneously the absolute temperature and the excitation power density. The Er3+ 2H11/2→4 I15/2 and 4 S3/2→4 I15/2 emission bands, which are commonly used for thermometric purposes, overlap with the 2 H9/2 →4 I13/2 emission band, which can lead to erroneous temperature readout. Applying the concept of luminescent primary thermometry to resolve the overlapping Er3+ transitions, a dual nanosensor synchronously measuring the temperature and the delivered laser pump power is successfully realized holding promising applications in laser-supported thermal therapies.publishe

    Designing Ln3+-doped BiF3 particles for luminescent primary thermometry and molecular logic

    Get PDF
    The design of molecular materials suitable for disparate fields could lead to new advances in engineering applications. In this work, a series of Ln3+-doped BiF3 sub-microparticles were synthesized through microwave-assisted synthesis. The effects of doping are evaluated from the structural and morphological viewpoint. In general, increasing the Ln3+ concentration the octahedral habitus is distorted to a spheric one, and some aggregates are visible without any differences in the crystalline phase. The optical response of the samples confirms that the BiF3 materials are suitable hosts for the luminescence of the tested trivalent lanthanide (Ln3+) ions (Ln = Eu, Tb, Tm, Ho, Er, Yb). A Yb3+/ Er3+ co-doped sample is presented as an illustrative example of all-photonic molecular logic operations and primary luminescent thermometry.publishe

    Estimation of secondary production of the Faro/ Ancão artificial reefs

    Get PDF
    The secondary productivity of reef epifauna is one of the least investigated aspects in artificial reef research. During the first 12 months after the deployment of the Faro/Ancao (Algarve, Portugal) artificial reef, we assessed the effect of substratum orientation on the secondary production of epibenthos, using the Boysen-Jensen method. Whenever the method could not be applied, secondary production was estimated by the P/B ratio. The results showed that the epibenthic production was higher on the horizontal surface throughout the study. However, at the end of the study period, the mean production showed similar values. The horizontally oriented surfaces showed a mean production between 128 and 103 g m-2 yr-1, while at the vertical surfaces the mean production varied between 103 and 98 g m-2 yr-1. Furthermore, the mean annual production was extrapolated for all the Algarve artificial reef complex, and we concluded that after one year of deployment theses artificial reefs were able to generate around 5 MT of epibenthic fauna

    Upconversion Nanocomposite Materials With Designed Thermal Response for Optoelectronic Devices

    Get PDF
    Upconversion is a non-linear optical phenomenon by which low energy photons stimulate the emission of higher energy ones. Applications of upconversion materials are wide and cover diverse areas such as bio-imaging, solar cells, optical thermometry, displays, and anti-counterfeiting technologies, among others. When these materials are synthesized in the form of nanoparticles, the effect of temperature on the optical emissions depends critically on their size, creating new opportunities for innovation. However, it remains a challenge to achieve upconversion materials that can be easily processed for their direct application or for the manufacture of optoelectronic devices. In this work, we developed nanocomposite materials based on upconversion nanoparticles (UCNPs) dispersed in a polymer matrix of either polylactic acid or poly(methyl methacrylate). These materials can be processed from solution to form thin film multilayers, which can be patterned by applying soft-lithography techniques to produce the desired features in the micro-scale, and luminescent tracks when used as nanocomposite inks. The high homogeneity of the films, the uniform distribution of the UCNPs and the easygoing deposition process are the distinctive features of such an approach. Furthermore, the size-dependent thermal properties of UCNPs can be exploited by a proper formulation of the nanocomposites in order to develop materials with high thermal sensitivity and a thermochromic response. Here, we thus present different strategies for designing optical devices through patterning techniques, ink dispensing and multilayer stacking. By applying upconverting nanocomposites with unique thermal responses, local heating effects in designed nanostructures were observed
    • …
    corecore