161 research outputs found

    Behavior and Ecology of Silky Sharks Around the Chagos Archipelago and Evidence of Indian Ocean Wide Movement

    Get PDF
    Silky sharks (Carcharhinus falciformis) represent a major component of global shark catch, both directly and as bycatch, and populations are declining as a result. An improved understanding of their movement ecology is needed to support conservation efforts. We deployed satellite and acoustic tags (2013-2018) and analysed historical fisheries records (1997-2009), to investigate the spatial ecology of silky sharks in the central Indian Ocean and a large Marine Protected Area (MPA; 640,000 km2) around the Chagos Archipelago. We observed high fidelity to the MPA, and a sustained diurnal association with a seamount complex, with individuals moving off at night and returning at sunrise. Yet, we also observed large-scale divergent movements in two satellite tagged individuals and documented the furthest recorded displacement distance for the species to date, with one individual moving from the MPA to the Kenyan coast – a displacement distance of 3,549 km (track distance ~4,782 km). Silky sharks undertook diel vertical migrations and oscillatory diving behaviour, spending >99% of their time in the top 100 m, and diving to depths of greater than 300 m, overlapping directly with typical deployments of purse seine and longline sets in the Indian Ocean. One individual was recorded to a depth of 1,112 m, the deepest recorded silky shark dive to date. Individuals spent 96% of their time at liberty within water temperatures between 24-30 °C. Historic fisheries data revealed that silky sharks were a major component of the shark community around the archipelago, representing 13.7% of all sharks caught by longlines before the fishery closed in 2010. Over half (55.9%) of all individuals caught by longlines and purse seiners were juveniles. The large proportion of juveniles, coupled with the high site fidelity and residence observed in some individuals, suggests that the MPA could provide considerable conservation benefits for silky sharks, particularly during early life-history stages. However, their high mobility potential necessitates that large MPAs need to be considered in conjunction with fisheries regulations and conservation measures in adjacent EEZs and in areas beyond national jurisdiction

    The control of attentional target selection in a colour/colour conjunction task

    Get PDF
    To investigate the time course of attentional object selection processes in visual search tasks where targets are defined by a combination of features from the same dimension, we measured the N2pc component as an electrophysiological marker of attentional object selection during colour/colour conjunction search. In Experiment 1, participants searched for targets defined by a combination of two colours, while ignoring distractor objects that matched only one of these colours. Reliable N2pc components were triggered by targets and also by partially matching distractors, even when these distractors were accompanied by a target in the same display. The target N2pc was initially equal in size to the sum of the two N2pc components to the two different types of partially matching distractors, and became superadditive from about 250 ms after search display onset. Experiment 2 demonstrated that the superadditivity of the target N2pc was not due to a selective disengagement of attention from task-irrelevant partially matching distractors. These results indicate that attention was initially deployed separately and in parallel to all target-matching colours, before attentional allocation processes became sensitive to the presence of both matching colours within the same object. They suggest that attention can be controlled simultaneously and independently by multiple features from the same dimension, and that feature-guided attentional selection processes operate in parallel for different target-matching objects in the visual field

    Preserved Morphology and Physiology of Excitatory Synapses in Profilin1-Deficient Mice

    Get PDF
    Profilins are important regulators of actin dynamics and have been implicated in activity-dependent morphological changes of dendritic spines and synaptic plasticity. Recently, defective presynaptic excitability and neurotransmitter release of glutamatergic synapses were described for profilin2-deficient mice. Both dendritic spine morphology and synaptic plasticity were fully preserved in these mutants, bringing forward the hypothesis that profilin1 is mainly involved in postsynaptic mechanisms, complementary to the presynaptic role of profilin2. To test the hypothesis and to elucidate the synaptic function of profilin1, we here specifically deleted profilin1 in neurons of the adult forebrain by using conditional knockout mice on a CaMKII-cre-expressing background. Analysis of Golgi-stained hippocampal pyramidal cells and electron micrographs from the CA1 stratum radiatum revealed normal synapse density, spine morphology, and synapse ultrastructure in the absence of profilin1. Moreover, electrophysiological recordings showed that basal synaptic transmission, presynaptic physiology, as well as postsynaptic plasticity were unchanged in profilin1 mutants. Hence, loss of profilin1 had no adverse effects on the morphology and function of excitatory synapses. Our data are in agreement with two different scenarios: i) profilins are not relevant for actin regulation in postsynaptic structures, activity-dependent morphological changes of dendritic spines, and synaptic plasticity or ii) profilin1 and profilin2 have overlapping functions particularly in the postsynaptic compartment. Future analysis of double mutant mice will ultimately unravel whether profilins are relevant for dendritic spine morphology and synaptic plasticity

    In vivo STED microscopy visualizes morphological changes of large PSD95 assemblies over several hours in the mouse visual cortex

    Get PDF
    Abstract The post-synaptic density (PSD) is an electron dense region consisting of ~1000 proteins, found at the postsynaptic membrane of excitatory synapses, which varies in size depending upon synaptic strength. PSD95 is an abundant scaffolding protein in the PSD and assembles a family of supercomplexes comprised of neurotransmitter receptors, ion channels, as well as signalling and structural proteins. We use superresolution STED (STimulated Emission Depletion) nanoscopy to determine the size and shape of PSD95 in the anaesthetised mouse visual cortex. Adult knock-in mice expressing eGFP fused to the endogenous PSD95 protein were imaged at time points from 1 min to 6 h. Superresolved large assemblies of PSD95 show different sub-structures; most large assemblies were ring-like, some horse-shoe or figure-8 shaped, and shapes were continuous or made up of nanoclusters. The sub-structure appeared stable during the shorter (minute) time points, but after 1 h, more than 50% of the large assemblies showed a change in sub-structure. Overall, these data showed a sub-morphology of large PSD95 assemblies which undergo changes within the 6 hours of observation in the anaesthetised mouse

    Polymers for Improving the In Vivo Transduction Efficiency of AAV2 Vectors

    Get PDF
    Background: Adeno-associated virus has attracted great attention as vehicle for body-wide gene delivery. However, for the successful treatment of a disease such as Duchenne muscular dystrophy infusion of very large amounts of vectors is required. This not only raises questions about the technical feasibility of the large scale production but also about the overall safety of the approach. One way to overcome these problems would be to find strategies able to increase the in vivo efficiency. Methodology: Here, we investigated whether polymers can act as adjuvants to increase the in vivo efficiency of AAV2. Our strategy consisted in the pre-injection of polymers before intravenous administration of mice with AAV2 encoding a murine secreted alkaline phosphatase (mSeAP). The transgene expression, vector biodistribution and tissue transduction were studied by quantification of the mSeAP protein and real time PCR. The injection of polyinosinic acid and polylysine resulted in an increase of plasmatic mSeAP of 2- and 12-fold, respectively. Interestingly, polyinosinic acid pre-injection significantly reduced the neutralizing antibody titer raised against AAV2. Conclusions: Our results show that the pre-injection of polymers can improve the overall transduction efficiency of systemically administered AAV2 and reduce the humoral response against the capsid proteins

    Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders.

    Get PDF
    International audienceSHANK3 (also known as ProSAP2) regulates the structural organization of dendritic spines and is a binding partner of neuroligins; genes encoding neuroligins are mutated in autism and Asperger syndrome. Here, we report that a mutation of a single copy of SHANK3 on chromosome 22q13 can result in language and/or social communication disorders. These mutations concern only a small number of individuals, but they shed light on one gene dosage-sensitive synaptic pathway that is involved in autism spectrum disorders

    Availability and structure of primary medical care services and population health and health care indicators in England

    Get PDF
    BACKGROUND: It has been proposed that greater availability of primary medical care practitioners (GPs) contributes to better population health. We evaluated whether measures of the supply and structure of primary medical services are associated with health and health care indicators after adjusting for confounding. METHODS: Data for the supply and structure of primary medical services and the characteristics of registered patients were analysed for 99 health authorities in England in 1999. Health and health care indicators as dependent variables included standardised mortality ratios (SMR), standardised hospital admission rates, and conceptions under the age of 18 years. Linear regression analyses were adjusted for Townsend score, proportion of ethnic minorities and proportion of social class IV/ V. RESULTS: Higher proportions of registered rural patients and patients ≥ 75 years were associated with lower Townsend deprivation scores, with larger partnership sizes and with better health outcomes. A unit increase in partnership size was associated with a 4.2 (95% confidence interval 1.7 to 6.7) unit decrease in SMR for all-cause mortality at 15–64 years (P = 0.001). A 10% increase in single-handed practices was associated with a 1.5 (0.2 to 2.9) unit increase in SMR (P = 0.027). After additional adjustment for percent of rural and elderly patients, partnership size and proportion of single-handed practices, GP supply was not associated with SMR (-2.8, -6.9 to 1.3, P = 0.183). CONCLUSIONS: After adjusting for confounding with health needs of populations, mortality is weakly associated with the degree of organisation of practices as represented by the partnership size but not with the supply of GPs

    The Effect of Thermal Reduction on the Photoluminescence and Electronic Structures of Graphene Oxides

    Get PDF
    [[abstract]]Electronic structures of graphene oxide (GO) and hydro-thermally reduced graphene oxides (rGOs)processed at low temperatures (120–1806C) were studied using X-ray absorption near-edge structure XANES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). C K-edge XANES spectra of rGOs reveal that thermal reduction restores C 5 C sp2 bonds and removes some of the oxygen and hydroxyl groups of GO, which initiates the evolution of carbonaceous species. The combination of C K-edge XANES and Ka XES spectra shows that the overlapping p and p* orbitals in rGOs and GO are similar to that of highly ordered pyrolytic graphite (HOPG), which has no band-gap. C Ka RIXS spectra provide evidence that thermal reduction changes the density of states (DOSs) that is generated in the p-region and/or in the gap between the p and p* levels of the GO and rGOs. Two-dimensional C Ka RIXS mapping of the heavy reduction of rGOs further confirms that the residual oxygen and/or oxygen-containing functional groups modify the p and s features, which are dispersed by the photon excitation energy. The dispersion behavior near the K point is approximately linear and differs from the parabolic-like dispersion observed in HOPG.[[notice]]補正完畢[[journaltype]]國外[[incitationindex]]SCI[[ispeerreviewed]]Y[[booktype]]電子版[[countrycodes]]GB

    Validation of the Tetracycline Regulatable Gene Expression System for the Study of the Pathogenesis of Infectious Disease

    Get PDF
    Understanding the pathogenesis of infectious disease requires the examination and successful integration of parameters related to both microbial virulence and host responses. As a practical and powerful method to control microbial gene expression, including in vivo, the tetracycline-regulatable system has recently gained the favor of many investigative groups. However, some immunomodulatory effects of the tetracyclines, including doxycycline, could potentially limit its use to evaluate host responses during infection. Here we have used a well-established murine model of disseminated candidiasis, which is highly dependent on both the virulence displayed by the fungal cells and on the host immune status, to validate the use of this system. We demonstrate that the pathogenesis of the wild type C. albicans CAF2-1 strain, which does not contain any tet-regulatable element, is not affected by the presence of doxycycline. Moreover levels of key cytokines, chemokines and many other biomarkers, as determined by multi-analyte profiling, remain essentially unaltered by the presence of the antibiotic during infection. Our results indicate that the levels of doxycycline needed to control the tetracycline regulatable promoter gene expression system have no detectable effect on global host responses during candidiasis. Because tet-regulatable systems are now being increasingly used in a variety of pathogenic microorganisms, these observations have wide implications in the field of infectious diseases

    Gymnemic acids inhibit hyphal growth and virulence in Candida albicans

    Get PDF
    Candida albicans is an opportunistic and polymorphic fungal pathogen that causes mucosal, disseminated and invasive infections in humans. Transition from the yeast form to the hyphal form is one of the key virulence factors in C. albicans contributing to macrophage evasion, tissue invasion and biofilm formation. Nontoxic small molecules that inhibit C. albicans yeast-to-hypha conversion and hyphal growth could represent a valuable source for understanding pathogenic fungal morphogenesis, identifying drug targets and serving as templates for the development of novel antifungal agents. Here, we have identified the triterpenoid saponin family of gymnemic acids (GAs) as inhibitor of C. albicans morphogenesis. GAs were isolated and purified from Gymnema sylvestre leaves, the Ayurvedic traditional medicinal plant used to treat diabetes. Purified GAs had no effect on the growth and viability of C. albicans yeast cells but inhibited its yeast-to-hypha conversion under several hypha-inducing conditions, including the presence of serum. Moreover, GAs promoted the conversion of C. albicans hyphae into yeast cells under hypha inducing conditions. They also inhibited conidial germination and hyphal growth of Aspergillus sp. Finally, GAs inhibited the formation of invasive hyphae from C. albicans-infected Caenorhabditis elegans worms and rescued them from killing by C. albicans. Hence, GAs could be useful for various antifungal applications due to their traditional use in herbal medicine
    corecore