188 research outputs found

    Discriminative Parameter Estimation for Random Walks Segmentation

    Get PDF
    The Random Walks (RW) algorithm is one of the most e - cient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Speci cally, they provide a hard segmentation of the images, instead of a proba- bilistic segmentation. We overcome this challenge by treating the opti- mal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach signi cantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles.Comment: Medical Image Computing and Computer Assisted Interventaion (2013

    Discriminative Parameter Estimation for Random Walks Segmentation: Technical Report

    Get PDF
    The Random Walks (RW) algorithm is one of the most e - cient and easy-to-use probabilistic segmentation methods. By combining contrast terms with prior terms, it provides accurate segmentations of medical images in a fully automated manner. However, one of the main drawbacks of using the RW algorithm is that its parameters have to be hand-tuned. we propose a novel discriminative learning framework that estimates the parameters using a training dataset. The main challenge we face is that the training samples are not fully supervised. Speci cally, they provide a hard segmentation of the images, instead of a proba-bilistic segmentation. We overcome this challenge by treating the optimal probabilistic segmentation that is compatible with the given hard segmentation as a latent variable. This allows us to employ the latent support vector machine formulation for parameter estimation. We show that our approach signi cantly outperforms the baseline methods on a challenging dataset consisting of real clinical 3D MRI volumes of skeletal muscles

    Prospective exploratory muscle biopsy, imaging, and functional assessment in patients with late-onset Pompe disease treated with alglucosidase alfa: The EMBASSY Study

    Get PDF
    Background Late-onset Pompe disease is characterized by progressive skeletal myopathy followed by respiratory muscle weakness, typically leading to loss of ambulation and respiratory failure. In this population, enzyme replacement therapy (ERT) with alglucosidase alfa has been shown to stabilize respiratory function and improve mobility and muscle strength. Muscle pathology and glycogen clearance from skeletal muscle in treatment-naïve adults after ERT have not been extensively examined. Methods This exploratory, open-label, multicenter study evaluated glycogen clearance in muscle tissue samples collected pre- and post- alglucosidase alfa treatment in treatment-naïve adults with late-onset Pompe disease. The primary endpoint was the quantitative reduction in percent tissue area occupied by glycogen in muscle biopsies from baseline to 6 months. Secondary endpoints included qualitative histologic assessment of tissue glycogen distribution, secondary pathology changes, assessment of magnetic resonance images (MRIs) for intact muscle and fatty replacement, and functional assessments. Results Sixteen patients completed the study. After 6 months of ERT, the percent tissue area occupied by glycogen in quadriceps and deltoid muscles decreased in 10 and 8 patients, respectively. No changes were detected on MRI from baseline to 6 months. A majority of patients showed improvements on functional assessments after 6 months of treatment. All treatment-related adverse events were mild or moderate. Conclusions This exploratory study provides novel insights into the histopathologic effects of ERT in late-onset Pompe disease patients. Ultrastructural examination of muscle biopsies demonstrated reduced lysosomal glycogen after ERT. Findings are consistent with stabilization of disease by ERT in treatment-naïve patients with late-onset Pompe disease

    Quantitative 1H and 23Na muscle MRI in Facioscapulohumeral muscular dystrophy patients

    Get PDF
    Abstract Objective Our aim was to assess the role of quantitative 1H and 23Na MRI methods in providing imaging biomarkers of disease activity and severity in patients with Facioscapulohumeral muscular dystrophy (FSHD). Methods We imaged the lower leg muscles of 19 FSHD patients and 12 controls with a multimodal MRI protocol to obtain STIR-T2w images, fat fraction (FF), water T2 (wT2), water T1 (wT1), tissue sodium concentration (TSC), and intracellular-weighted sodium signal (inversion recovery (IR) and triple quantum filter (TQF) sequence). In addition, the FSHD patients underwent muscle strength testing. Results Imaging biomarkers related with water mobility (wT1 and wT2) and ion homeostasis (TSC, IR, TQF) were increased in muscles of FSHD patients. Muscle groups with FF > 10% had higher wT2, wT1, TSC, IR, and TQF values than muscles with FF < 10%. Muscles with FF < 10% resembled muscles of healthy controls for these MRI disease activity measures. However, wT1 was increased in few muscles without fat replacement. Furthermore, few STIR-negative muscles (n = 11/76) exhibited increased wT1, TSC, IR or TQF. Increased wT1 as well as 23Na signals were also present in muscles with normal wT2. Muscle strength was related to the mean FF and all imaging biomarkers of tibialis anterior except wT2 were correlated with dorsal flexion. Conclusion The newly evaluated imaging biomarkers related with water mobility (wT1) and ion homeostasis (TSC, IR, TQF) showed different patterns compared to the established markers like FF in muscles of FSHD patients. These quantitative biomarkers could thus contain valuable complementary information for the early characterization of disease progression

    Dmdmdx/Largemyd: a new mouse model of neuromuscular diseases useful for studying physiopathological mechanisms and testing therapies

    Get PDF
    Although muscular dystrophies are among the most common human genetic disorders, there are few treatment options available. Animal models have become increasingly important for testing new therapies prior to entering human clinical trials. The Dmdmdx mouse is the most widely used animal model for Duchenne muscular dystrophy (DMD), presenting the same molecular and protein defect as seen in humans with the disease. However, this mouse is not useful for clinical trials because of its very mild phenotype. The mouse model for congenital myodystrophy type 1D, Largemyd, harbors a mutation in the glycosyltransferase Large gene and displays a severe phenotype. To help elucidate the role of the proteins dystrophin and LARGE in the organization of the dystrophin-glycoprotein complex in muscle sarcolemma, we generated double-mutant mice for the dystrophin and LARGE proteins. The new Dmdmdx/Largemyd mouse model is viable and shows a severe phenotype that is associated with the lack of dystrophin in muscle. We tested the usefulness of our new mouse model for cell therapy by systemically injecting them with normal murine mesenchymal adipose stem cells (mASCs). We verified that the mASCs were hosted in the dystrophic muscle. The new mouse model has proven to be very useful for the study of several other therapies, because injected cells can be screened both through DNA and protein analysis. Study of its substantial muscle weakness will also be very informative in the evaluation of functional benefits of these therapies.FAPESP - CEPIDInstituto Nacional de Ciência e Tecnologia em Células-Tronco e Terapia Celular (INCTC) - CNPqFINEPABDIMCAPES / COFECU

    Globalização económica e fragmentação geopolítica : a caminho de um mundo de equilíbrios instáveis e temporários?

    Get PDF
    Este texto explora a ideia de que a evolução mundial nos próximos anos vai ser marcada pela interacção complexa entre, por um lado as tensões associadas à Globalização da Economia Mundial, e por outro as Incertezas em torno da Fragmentação Geopolítica Mundial. Começa por identificar os grandes processos envolvidos na primeira "força motriz" - uma ampliação e "regionalização" da Economia Mundial; uma dinâmica de Globalização económica; uma competição acesa entre "Modelos de Capitalísmo"; uma mutação tecnológica abrangente, que modifica as estruturas económicas e a posição relativa das economias; e por último uma regulação económica global que procura responder à acumulação de tensões geradas pela interacção dos processos anteriores. Seguidamente identifica alguns processos chave que organizam a segunda" força motriz", como sejam o avanço da democratização, decorrendo em paralelo com a sobreposição de crises profundas em diversos Estados; um processo de fragmentação e "regionalização" em termos geopolíticos e de segurança; uma alteração na relação de forças entre potências, que está ainda numa fase inconclusiva; uma mutação tecnológica militar que pode influenciar decisivamente essa alteração; e a manifestação de dificuldades na regulação estratégica e geopolítica mundial, pela interacção dos processos anteriores e no contexto da ultrapassagem dos mecanismos de regulação típicos da guerra fria. Por último o texto ilustra algumas das interacções que se podem estabelecer entre as dinâmicas das duas "forças motrizes" sem explorar em profundidade o tema

    The Clinical Outcome Study for dysferlinopathy: An international multicenter study

    Get PDF
    Objective: To describe the baseline clinical and functional characteristics of an international cohort of 193 patients with dysferlinopathy. Methods: The Clinical Outcome Study for dysferlinopathy (COS) is an international multicenter study of this disease, evaluating patients with genetically confirmed dysferlinopathy over 3 years. We present a cross-sectional analysis of 193 patients derived from their baseline clinical and functional assessments. Results: There is a high degree of variability in disease onset, pattern of weakness, and rate of progression. No factor, such as mutation class, protein expression, or age at onset, accounted for this variability. Among patients with clinical diagnoses of Miyoshi myopathy or limb-girdle muscular dystrophy, clinical presentation and examination was not strikingly different. Respiratory impairment and cardiac dysfunction were observed in a minority of patients. A substantial delay in diagnosis was previously common but has been steadily reducing, suggesting increasing awareness of dysferlinopathies. Conclusions: These findings highlight crucial issues to be addressed for both optimizing clinical care and planning therapeutic trials in dysferlinopathy. This ongoing longitudinal study will provide an opportunity to further understand patterns and variability in disease progression and form the basis for trial design

    Assessing Dysferlinopathy Patients Over Three Years With a New Motor Scale

    Get PDF
    The Jain COS Consortium.[Objective] Dysferlinopathy is a muscular dystrophy with a highly variable clinical presentation and currently unpredictable progression. This variability and unpredictability presents difficulties for prognostication and clinical trial design. The Jain Clinical Outcomes Study of Dysferlinopathy aims to establish the validity of the North Star Assessment for Limb Girdle Type Muscular Dystrophies (NSAD) scale and identify factors that influence the rate of disease progression using NSAD.[Methods] We collected a longitudinal series of functional assessments from 187 patients with dysferlinopathy over 3 years. Rasch analysis was used to develop the NSAD, a motor performance scale suitable for ambulant and nonambulant patients. Generalized estimating equations were used to evaluate the impact of patient factors on outcome trajectories.[Results] The NSAD detected significant change in clinical progression over 1 year. The steepest functional decline occurred during the first 10 years after symptom onset, with more rapid decline noted in patients who developed symptoms at a younger age (p = 0.04). The most rapidly deteriorating group over the study was patients 3 to 8 years post symptom onset at baseline.[Interpretation] The NSAD is the first validated limb girdle specific scale of motor performance, suitable for use in clinical practice and clinical trials. Longitudinal analysis showed it may be possible to identify patient factors associated with greater functional decline both across the disease course and in the short-term for clinical trial preparation. Through further work and validation in this cohort, we anticipate that a disease model incorporating functional performance will allow for more accurate prognosis for patients with dysferlinopathy. ANN NEUROL 2021;89:967–978The estimated US $4 million needed to fund this study was provided by the Jain Foundation. (www.jain-foundation.org) The Jain COS consortium would like to thank the study participants and their families for their invaluable contribution. The John Walton Centre Muscular Dystrophy Research Centre is part of the MRC Centre for Neuromuscular Diseases (Grant number MR/K000608/1).Peer reviewe
    • …
    corecore