41 research outputs found

    "Gestión de la calidad y calidad de vida en pacientes de hemodiálisis crónica del Hospital Alberto Sabogal"

    Get PDF
    Con el objetivo de establecer la relación entre la gestión de la calidad en hemodiálisis y calidad de vida de los pacientes del programa de hemodiálisis crónica. Se realizó el estudio retro-prospectivo durante los años 2010 – 2013. En el que se determinaron los indicadores de gestión de calidad: indicadores globales, anemia, acceso vascular, riesgo cardiovascular, nutrición, enfermedades víricas, agua tratada, trasplante renal. Se aplicó el test Coop-Wonka de calidad de vida tres veces al año. Obteniéndose los siguientes resultados para el año 2010 sólo se alcanzaron el objetivo en el 15. 38% de los indicadores. Para el 2011 se llegó al 23.07% mejorando con respecto al 2010. En el 2012 se alcanza los estándares en el 46.15% de los indicadores lo que refleja mejora significativa en la gestión de calidad de hemodiálisis ofertadas. Con respecto a la calidad de vida para el año 2010 el 30.54% presenta buena, 2011; el 43.54% refiere presentar buena calidad de vida y para el 2012 el 44.68% refiere presentar buena calidad de vida. Al establecer la relación de calidad de vida y gestión de calidad se obtiene existe relación estadísticamente significativa (p<0.05).Tesi

    NIVEL DE DEPRESIÓN POSPARTO EN PUÉRPERAS CON Y SIN CONTACTO PRECOZ PIEL A PIEL MADRE –HIJO ATENDIDAS EN EL HOSPITAL GOYENECHE, AREQUIPA. ENERO – FEBRERO 2016.

    Get PDF
    CONTACTO PIEL A PIE (CPP) DEFINICIÓN TEORÍAS DEL CPP BENEFICIOS DEL CPP DEFINICIÓN DE PARTO EUTÓCICO DEFINICIÓN DE PARTO DISTÓCICO DEPRESIÓN POSPARTO EPIDEMIOLOGIA FACTORES ETIOPATOGENIAS TRASTORNOS DEL ESTADO DE ÁNIMO EN EL POSPARTO DIAGNÓSTICO SÍNTOMAS DEPRESIVOS TRATAMIENTO PREVENCIÓN ESCALA DE DEPRESIÓN DE POSTPARTO DE EDIMBURGO (EPDS) ANÁLISIS DE ANTECEDENTES INVESTIGATIVO

    The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

    Get PDF
    Background: The NORMAN Association (https://www.norman-.network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-.network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https:// zenodo.org/communities/norman-.sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox. epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-.network.com/nds/SLE/)

    The WEBT campaign on the blazar 3C 279 in 2006

    Get PDF
    The quasar 3C279 was the target of an extensive multiwavelength monitoring campaign from January through April 2006, including an optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we focus on the results of the WEBT campaign. The source exhibited substantial variability of optical flux and spectral shape, with a characteristic time scale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other. In intriguing contrast to other (in particular, BL Lac type) blazars, we find a lag of shorter- behind longer-wavelength variability throughout the RVB ranges, with a time delay increasing with increasing frequency. Spectral hardening during flares appears delayed with respect to a rising optical flux. This, in combination with the very steep IR-optical continuum spectral index of ~ 1.5 - 2.0, may indicate a highly oblique magnetic field configuration near the base of the jet. An alternative explanation through a slow (time scale of several days) acceleration mechanism would require an unusually low magnetic field of < 0.2 G, about an order of magnitude lower than inferred from previous analyses of simultaneous SEDs of 3C279 and other FSRQs with similar properties

    The NORMAN Suspect List Exchange (NORMAN-SLE): Facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

    Get PDF
    Background: The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for “suspect screening” lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide. Results: The NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA’s CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101). Conclusions: The NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the “one substance, one assessment” approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/)

    The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry

    Get PDF
    The NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.The NORMAN-SLE project has received funding from the NORMAN Association via its joint proposal of activities. HMT and ELS are supported by the Luxembourg National Research Fund (FNR) for project A18/BM/12341006. ELS, PC, SEH, HPHA, ZW acknowledge funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101036756, project ZeroPM: Zero pollution of persistent, mobile substances. The work of EEB, TC, QL, BAS, PAT, and JZ was supported by the National Center for Biotechnology Information of the National Library of Medicine (NLM), National Institutes of Health (NIH). JOB is the recipient of an NHMRC Emerging Leadership Fellowship (EL1 2009209). KVT and JOB acknowledge the support of the Australian Research Council (DP190102476). The Queensland Alliance for Environmental Health Sciences, The University of Queensland, gratefully acknowledges the financial support of the Queensland Department of Health. NR is supported by a Miguel Servet contract (CP19/00060) from the Instituto de Salud Carlos III, co-financed by the European Union through Fondo Europeo de Desarrollo Regional (FEDER). MM and TR gratefully acknowledge financial support by the German Ministry for Education and Research (BMBF, Bonn) through the project “Persistente mobile organische Chemikalien in der aquatischen Umwelt (PROTECT)” (FKz: 02WRS1495 A/B/E). LiB acknowledges funding through a Research Foundation Flanders (FWO) fellowship (11G1821N). JAP and JMcL acknowledge financial support from the NIH for CCSCompendium (S50 CCSCOMPEND) via grants NIH NIGMS R01GM092218 and NIH NCI 1R03CA222452-01, as well as the Vanderbilt Chemical Biology Interface training program (5T32GM065086-16), plus use of resources of the Center for Innovative Technology (CIT) at Vanderbilt University. TJ was (partly) supported by the Dutch Research Council (NWO), project number 15747. UFZ (TS, MaK, WB) received funding from SOLUTIONS project (European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement No. 603437). TS, MaK, WB, JPA, RCHV, JJV, JeM and MHL acknowledge HBM4EU (European Union’s Horizon 2020 research and innovation programme under the grant agreement no. 733032). TS acknowledges funding from NFDI4Chem—Chemistry Consortium in the NFDI (supported by the DFG under project number 441958208). TS, MaK, WB and EMLJ acknowledge NaToxAq (European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 722493). S36 and S63 (HPHA, SEH, MN, IS) were funded by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Project No. (FKZ) 3716 67 416 0, updates to S36 (HPHA, SEH, MN, IS) by the German Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) Project No. (FKZ) 3719 65 408 0. MiK acknowledges financial support from the EU Cohesion Funds within the project Monitoring and assessment of water body status (No. 310011A366 Phase III). The work related to S60 and S82 was funded by the Swiss Federal Office for the Environment (FOEN), KK and JH acknowledge the input of Kathrin Fenner’s group (Eawag) in compiling transformation products from European pesticides registration dossiers. DSW and YDF were supported by the Canadian Institutes of Health Research and Genome Canada. The work related to S49, S48 and S77 was funded by the MAVA foundation; for S77 also the Valery Foundation (KG, JaM, BG). DML acknowledges National Science Foundation Grant RUI-1306074. YL acknowledges the National Natural Science Foundation of China (Grant No. 22193051 and 21906177), and the Chinese Postdoctoral Science Foundation (Grant No. 2019M650863). WLC acknowledges research project 108C002871 supported by the Environmental Protection Administration, Executive Yuan, R.O.C. Taiwan (Taiwan EPA). JG acknowledges funding from the Swiss Federal Office for the Environment. AJW was funded by the U.S. Environmental Protection Agency. LuB, AC and FH acknowledge the financial support of the Generalitat Valenciana (Research Group of Excellence, Prometeo 2019/040). KN (S89) acknowledges the PhD fellowship through Marie Skłodowska-Curie grant agreement No. 859891 (MSCA-ETN). Exposome-Explorer (S34) was funded by the European Commission projects EXPOsOMICS FP7-KBBE-2012 [308610]; NutriTech FP7-KBBE-2011-5 [289511]; Joint Programming Initiative FOODBALL 2014–17. CP acknowledges grant RYC2020-028901-I funded by MCIN/AEI/1.0.13039/501100011033 and “ESF investing in your future”, and August T Larsson Guest Researcher Programme from the Swedish University of Agricultural Sciences. The work of ML, MaSe, SG, TL and WS creating and filling the STOFF-IDENT database (S2) mostly sponsored by the German Federal Ministry of Education and Research within the RiSKWa program (funding codes 02WRS1273 and 02WRS1354). XT acknowledges The National Food Institute, Technical University of Denmark. MaSch acknowledges funding by the RECETOX research infrastructure (the Czech Ministry of Education, Youth and Sports, LM2018121), the CETOCOEN PLUS project (CZ.02.1.01/0.0/0.0/15_003/0000469), and the CETOCOEN EXCELLENCE Teaming 2 project supported by the Czech ministry of Education, Youth and Sports (No CZ.02.1.01/0.0/0.0/17_043/0009632).Peer reviewe

    Variación del bicarbonato sérico de pacientes en hemodiálisis crónica

    No full text
    La Insuficiencia Renal Crónica Terminal (IRCT), se ha convertido en un problema de Salud Pública. La incidencia de IRCT en Latinoamérica aumento casi el doble de 1991 a 1997. De acuerdo al reporte parcial del Centro Metropolitano de Hemodiálisis EsSALUD, hubo un incremento de 18% de pacientes en hemodiálisis durante enero 1998 a febrero 2001. El desarrollo de la diálisis en sus distintas variantes (hemodiálisis, diálisis peritoneal) han servido para rescatar de la muerte a una gran cantidad de pacientes con IRCT. La hemodiálisis ha sido y sigue siendo la técnica depuración extrarenal más usada (1) En pacientes en diálisis se retienen entre 100 y 200 mEq de Hidrogeniones (H+), entre sesiones de hemodiálisis. Por lo tanto una función importante de hemodiálisis es aportar un tampón para corregir la acidosis producida en el periodo intradiálisis. Los tampones utilizados en el líquido de diálisis con objeto de transferirlos a la sangre para neutralizar los hidrogeniones pueden ser bicarbonato o acetato (2) La composición del líquido de diálisis debe ser semejante a la del líquido intersticial o extracelular. El gradiente de difusión entre la sangre y el líquido de diálisis se establece en el dializador. (3) El empleo actual de bicarbonato en el líquido de diálisis exige un sistema con un diseño especial que mezcle dicho alcalino con un concentrado ácido con agua purificada. La concentración final del líquido de diálisis va de 31 a 39 mEq/lt.(2) El empleo de bicarbonato en el líquido de diálisis conlleva diversas complicaciones posibles (5,6). Explica la contaminación microbiana de la solución final de diálisis, porque el concentrado constituye un medio excelente para la proliferación bacteriana. Puede surgir hipoxemia durante la diálisis con bicarbonato si se utilizan concentraciones altas de este último. La concentración en cuestión parece ser resultado de la supresión de la ventilación a causa del incremento del pH (alcalinización) y de la concentración de bicarbonato en el suero. Además lo niveles altos de bicarbonato en el líquido de diálisis pueden originar alcalosis metabólica aguda y con ello confusión mental, letargo, debilidad y calambres. (1,2,3,5,6) El nivel óptimo de bicarbonato en solución de diálisis debe ser una concentración lo bastante baja para evitar la alcalosis notable en el periodo postdialítico, pero aún lo bastante alta para evitar la acidosis antes de la diálisis.(3) Los factores que rigen las cantidades necesarias de bicarbonato en sujetos en hemodiálisis incluyen la producción de ácido durante el periodo interdialítico; la eliminación de aninones orgánicos durante el método de hemodiálisis y el déficit de amortiguador del organismo. (3) Ante las pruebas cada vez más frecuentes de que brinda beneficio clínico corregir la acidosis crónica, habrá que prestar mayor atención al ajuste de la concentración de bicarbonato. Ante la falta de información de nivel optimo de bicarbonato en el liquido dializante se realiza la presente investigación HIPOTESIS: El uso de bicarbonato en el baño de diálisis condiciona elevación del bicarbonato sérico manifestado como Alcalosis Metabólica OBJETIVOS: A. GENERAL Determinar la variación de bicarbonato sérico pre y post hemodiálisis B. ESPECIFICOS - Determinar la frecuencia de Alcalosis Metabólica post diálisis - Determinar el nivel de bicarbonato adhoc del líquido dializante - Determinar el valor de bicarbonato pre y post diálisisTesis de segunda especialida
    corecore