32 research outputs found

    Plant Cellular and Molecular Biotechnology: Following Mariotti's Steps

    Get PDF
    This review is dedicated to the memory of Prof. Domenico Mariotti, who significantly contributed to establishing the Italian research community in Agricultural Genetics and carried out the first experiments of Agrobacterium-mediated plant genetic transformation and regeneration in Italy during the 1980s. Following his scientific interests as guiding principles, this review summarizes the recent advances obtained in plant biotechnology and fundamental research aiming to: (i) Exploit in vitro plant cell and tissue cultures to induce genetic variability and to produce useful metabolites; (ii) gain new insights into the biochemical function of Agrobacterium rhizogenes rol genes and their application to metabolite production, fruit tree transformation, and reverse genetics; (iii) improve genetic transformation in legume species, most of them recalcitrant to regeneration; (iv) untangle the potential of KNOTTED1-like homeobox (KNOX) transcription factors in plant morphogenesis as key regulators of hormonal homeostasis; and (v) elucidate the molecular mechanisms of the transition from juvenility to the adult phase in Prunus tree species

    Off-label long acting injectable antipsychotics in real-world clinical practice: a cross-sectional analysis of prescriptive patterns from the STAR Network DEPOT study

    Get PDF
    Introduction Information on the off-label use of Long-Acting Injectable (LAI) antipsychotics in the real world is lacking. In this study, we aimed to identify the sociodemographic and clinical features of patients treated with on- vs off-label LAIs and predictors of off-label First- or Second-Generation Antipsychotic (FGA vs. SGA) LAI choice in everyday clinical practice. Method In a naturalistic national cohort of 449 patients who initiated LAI treatment in the STAR Network Depot Study, two groups were identified based on off- or on-label prescriptions. A multivariate logistic regression analysis was used to test several clinically relevant variables and identify those associated with the choice of FGA vs SGA prescription in the off-label group. Results SGA LAIs were more commonly prescribed in everyday practice, without significant differences in their on- and off-label use. Approximately 1 in 4 patients received an off-label prescription. In the off-label group, the most frequent diagnoses were bipolar disorder (67.5%) or any personality disorder (23.7%). FGA vs SGA LAI choice was significantly associated with BPRS thought disorder (OR = 1.22, CI95% 1.04 to 1.43, p = 0.015) and hostility/suspiciousness (OR = 0.83, CI95% 0.71 to 0.97, p = 0.017) dimensions. The likelihood of receiving an SGA LAI grew steadily with the increase of the BPRS thought disturbance score. Conversely, a preference towards prescribing an FGA was observed with higher scores at the BPRS hostility/suspiciousness subscale. Conclusion Our study is the first to identify predictors of FGA vs SGA choice in patients treated with off-label LAI antipsychotics. Demographic characteristics, i.e. age, sex, and substance/alcohol use co-morbidities did not appear to influence the choice towards FGAs or SGAs. Despite a lack of evidence, clinicians tend to favour FGA over SGA LAIs in bipolar or personality disorder patients with relevant hostility. Further research is needed to evaluate treatment adherence and clinical effectiveness of these prescriptive patterns

    The Role of Attitudes Toward Medication and Treatment Adherence in the Clinical Response to LAIs: Findings From the STAR Network Depot Study

    Get PDF
    Background: Long-acting injectable (LAI) antipsychotics are efficacious in managing psychotic symptoms in people affected by severe mental disorders, such as schizophrenia and bipolar disorder. The present study aimed to investigate whether attitude toward treatment and treatment adherence represent predictors of symptoms changes over time. Methods: The STAR Network \u201cDepot Study\u201d was a naturalistic, multicenter, observational, prospective study that enrolled people initiating a LAI without restrictions on diagnosis, clinical severity or setting. Participants from 32 Italian centers were assessed at three time points: baseline, 6-month, and 12-month follow-up. Psychopathological symptoms, attitude toward medication and treatment adherence were measured using the Brief Psychiatric Rating Scale (BPRS), the Drug Attitude Inventory (DAI-10) and the Kemp's 7-point scale, respectively. Linear mixed-effects models were used to evaluate whether attitude toward medication and treatment adherence independently predicted symptoms changes over time. Analyses were conducted on the overall sample and then stratified according to the baseline severity (BPRS < 41 or BPRS 65 41). Results: We included 461 participants of which 276 were males. The majority of participants had received a primary diagnosis of a schizophrenia spectrum disorder (71.80%) and initiated a treatment with a second-generation LAI (69.63%). BPRS, DAI-10, and Kemp's scale scores improved over time. Six linear regressions\u2014conducted considering the outcome and predictors at baseline, 6-month, and 12-month follow-up independently\u2014showed that both DAI-10 and Kemp's scale negatively associated with BPRS scores at the three considered time points. Linear mixed-effects models conducted on the overall sample did not show any significant association between attitude toward medication or treatment adherence and changes in psychiatric symptoms over time. However, after stratification according to baseline severity, we found that both DAI-10 and Kemp's scale negatively predicted changes in BPRS scores at 12-month follow-up regardless of baseline severity. The association at 6-month follow-up was confirmed only in the group with moderate or severe symptoms at baseline. Conclusion: Our findings corroborate the importance of improving the quality of relationship between clinicians and patients. Shared decision making and thorough discussions about benefits and side effects may improve the outcome in patients with severe mental disorders

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Wheat Bran Phenolic Acids: Bioavailability and Stability in Whole Wheat-Based Foods

    No full text
    Wheat bran is generally considered a byproduct of the flour milling industry, but it is a great source of fibers, minerals, and antioxidants that are important for human health. Phenolic acids are a specific class of wheat bran components that may act as antioxidants to prevent heart disease and to lower the incidence of colon cancer. Moreover, phenolic acids have anti-inflammatory properties that are potentially significant for the promotion of gastrointestinal health. Evidence on the beneficial effects of phenolic acids as well as of other wheat bran components is encouraging the use of wheat bran as an ingredient of functional foods. After an overview of the chemistry, function, and bioavailability of wheat phenolic acids, the discussion will focus on how technologies can allow the formulation of new, functional whole wheat products with enhanced health-promoting value and safety without renouncing the good-tasting standards that are required by consumers. Finally, this review summarizes the latest studies about the stability of phenolic acids in wheat foods fortified by the addition of wheat bran, pearled fractions, or wheat bran extracts

    Sea fennel (Crithmum maritimum L.): from underutilized crop to new dried product for food use

    No full text
    Sea fennel (Crithmum maritimum L.) is a perennial halophyte species typical of coastal ecosystems, used fresh in traditional cuisine and folk medicine due to its sensory properties and a good content of healthy compounds. Although considered as a promising biosaline crop, this halophyte is underutilized for commercial cultivation possibly due to a shortage of its consumer demand. For promoting a full exploitation of this species, a new food product was obtained by drying sea fennel using different treatments (air-drying, microwave-drying, microwave-assisted air-drying and freeze-drying). Water activity, essential oil content, chlorophylls, surface colour, colouring power and sensory evaluation were analyzed. All drying treatments allow to obtain a good water activity but significantly reduced the content of essential oils and chlorophylls. Freeze-drying and microwaving preserved the surface colour parameters more than other drying treatments, while freeze-drying gave the product the best colouring power. Based on sensory analysis, microwave-drying, microwave-assisted air-drying and freeze-drying showed the highest scores among the drying methods. Taken together the results indicate that microwaving and freeze-drying are optimal for preserving qualitative traits, including organoleptic properties, in dried sea fennel for food use. Furthermore, dried sea fennel can be usefully exploited in human food not only for its aromatic traits but also for its food colouring power like other plant derived natural colorants. It could be concluded that this underutilized crop could play a better role for making up a sustainable food production system

    Signal transduction in artichoke [ Cynara cardunculus L. subsp. scolymus (L.) Hayek] callus and cell suspension cultures under nutritional stress

    No full text
    Stimulated production of secondary phenolic metabolites and proline was studied by using cell cultures of artichoke [Cynara cardunculus L. subsp. scolymus (L.) Hayek] submitted to nutritional stress. Artichoke cell cultures accumulated phenolic secondary metabolites in a pattern similar to that seen in artichoke leaves and heads (capitula). This paper shows that both callus and cell suspension cultures under nutritional stress accumulated phenolic compounds and proline, at the same time their biomass production was negatively affected by nutrient deficiency. The results obtained strongly suggest that plant tissues respond to nutrient deprivation by a defensive costly mechanism, which determines the establishment of a mechanism of trade-off between growth and adaptive response. Furthermore, the results of this research suggest that perception of abiotic stress and increased phenolic metabolites are linked by a sequence of biochemical processes that also involves the intracellular free proline and the oxidative pentose phosphate pathway. The main conclusion of this paper is that, once calli and cell suspension cultures respond to nutrient deficiency, in acclimated cells the establishment of a negative correlation between primary metabolism (growth) and secondary metabolism (defence compounds) is observed

    Enhanced Production of Apocarotenoids by Salicylic Acid Elicitation in Cell Suspension Cultures of Saffron (<i>Crocus sativus</i> L.)

    No full text
    A cell suspension culture of saffron (Crocus sativus L.) was previously established from style-derived calli to obtain an in vitro system for crocin, an uncommon and valuable water-soluble apocarotenoid, and carotenoid production suitable for future scaling up. To shed more light on the correlation between apocarotenoid biosynthesis and key-gene expression, in this study, SA was used at 0.5 mM concentration to elicit crocin production and the effects on carotenoid production were analyzed after 6, 12, 24, and 48 h. HPLC-DAD analysis was used for total crocin quantification as well as the other carotenoids zeaxanthin, β-carotene and lutein. Quantitative RT-PCR was used to analyze the transcript levels of saffron apocarotenoid biosynthetic key genes PSY (phytoene synthase), BCH1 (β-carotene hydroxylase), and CCD2 (carotenoid cleavage dioxygenase) after SA elicitation. In saffron suspension-cultured cells elicited by SA, the carotenoid biosynthetic pathway was mostly enhanced toward crocin biosynthesis, known to exert strong biological activity and therapeutic effects, rather than lutein or xanthins. SA increased BCH1 and CCD2 gene expression 15.6 and 3.3 times, respectively, compared to the control at 24 h after elicitation. Although a dynamic change of metabolite contents and gene expression was observed during the 48 h time course in response to SA elicitation, the changes of zeaxanthin and crocin were consistent with the regulation of the corresponding genes BCH and CCD2 during the time course. In conclusion, the effects of SA on regulation of gene expression in the apocarotenoid pathway could be successfully applied for the biotechnological production of crocin
    corecore