9 research outputs found
Genetic Architecture of Ischaemic Strokes after COVID-19 Shows Similarities with Large Vessel Strokes
COVID-19; Ischaemic stroke; Local genetic correlationCOVID-19; Ictus isquèmic; Correlació genètica localCOVID-19; Ictus isquémico; Correlación genética localWe aimed to analyse whether patients with ischaemic stroke (IS) occurring within eight days after the onset of COVID-19 (IS-COV) are associated with a specific aetiology of IS. We used SUPERGNOVA to identify genome regions that correlate between the IS-COV cohort (73 IS-COV cases vs. 701 population controls) and different aetiological subtypes. Polygenic risk scores (PRSs) for each subtype were generated and tested in the IS-COV cohort using PRSice-2 and PLINK to find genetic associations. Both analyses used the IS-COV cohort and GWAS from MEGASTROKE (67,162 stroke patients vs. 454,450 population controls), GIGASTROKE (110,182 vs. 1,503,898), and the NINDS Stroke Genetics Network (16,851 vs. 32,473). Three genomic regions were associated (p-value < 0.05) with large artery atherosclerosis (LAA) and cardioembolic stroke (CES). We found four loci targeting the genes PITX2 (rs10033464, IS-COV beta = 0.04, p-value = 2.3 × 10−2, se = 0.02), previously associated with CES, HS6ST1 (rs4662630, IS-COV beta = −0.04, p-value = 1.3 × 10−3, se = 0.01), TMEM132E (rs12941838 IS-COV beta = 0.05, p-value = 3.6 × 10−4, se = 0.01), and RFFL (rs797989 IS-COV beta = 0.03, p-value = 1.0 × 10−2, se = 0.01). A statistically significant PRS was observed for LAA. Our results suggest that IS-COV cases are genetically similar to LAA and CES subtypes. Larger cohorts are needed to assess if the genetic factors in IS-COV cases are shared with the general population or specific to viral infection.This work was supported by the Spanish National Research Council (CSIC) via COVID-19 Funds (Ref.CSIC202020E086), the European Commission—NextGenerationEU (Regulation EU 2020/2094), through CSIC’s Global Health Platform, the Instituto de Salud Carlos III through the iBioStroke project (AC19/00106 Eranet-Neuron, European research grants), the RICORS RD21/0006/0006, FEDER, NextGeneration EU, the PREVICTUS project (PMP21/00165), and the COPYCTUS project (PI21/01088). IIB SANT PAU is funded by the Catalan Government (CERCA Program/Generalitat de Catalunya). M.L. is funded by a PFIS Contract (Contratos Predoctorales de Formación en Investigación en Salud FI19/00309) from Instituto de Salud Carlos III (ISCIII). C.G.-F. is supported by a Sara Borrel contract (CD20/00043) from Instituto Carlos III and Fondo Europeo de Desarrollo Regional (ISCIII-FEDER). The BelCovid cohort is funded by The Belgian National Funds for Scientific Research and Fondation Léon Fredericq
Multi-ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke
During the first hours after stroke onset, neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between the National Institutes of Health Stroke Scale (NIHSS) within 6 h of stroke onset and NIHSS at 24 h. A total of 5876 individuals from seven countries (Spain, Finland, Poland, USA, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of NIHSS at 24 h of variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture from that of stroke risk. Eight loci (1p21.1, 1q42.2, 2p25.1, 2q31.2, 2q33.3, 5q33.2, 7p21.2 and 13q31.1) were genome-wide significant and explained 1.8% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each locus. Expression quantitative trait loci mapping and summary data-based Mendelian randomization indicate that ADAM23 (log Bayes factor = 5.41) was driving the association for 2q33.3. Gene-based analyses suggested that GRIA1 (log Bayes factor = 5.19), which is predominantly expressed in the brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated GNPAT (log Bayes factor = 7.64) ABCB5 (log Bayes factor = 5.97) for the 1p21.1 and 7p21.1 loci. Human brain single-nuclei RNA-sequencing indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23, a presynaptic protein and GRIA1, a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provide the first genetic evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischaemic stroke. Ibanez et al. perform a multi-ancestry meta-analysis to investigate the genetic architecture of early stroke outcomes. Two of the eight genome-wide significant loci identified-ADAM23 and GRIA1-are involved in synaptic excitability, suggesting that excitotoxicity contributes to neurological instability after ischaemic stroke.Peer reviewe
Contribution of Common Genetic Variants to Risk of Early-Onset Ischemic Stroke
Background and Objectives Current genome-wide association studies of ischemic stroke have focused primarily on late-onset disease. As a complement to these studies, we sought to identify the contribution of common genetic variants to risk of early-onset ischemic stroke. Methods We performed a meta-analysis of genome-wide association studies of early-onset stroke (EOS), ages 18-59 years, using individual-level data or summary statistics in 16,730 cases and 599,237 nonstroke controls obtained across 48 different studies. We further compared effect sizes at associated loci between EOS and late-onset stroke (LOS) and compared polygenic risk scores (PRS) for venous thromboembolism (VTE) between EOS and LOS. Results We observed genome-wide significant associations of EOS with 2 variants in ABO, a known stroke locus. These variants tag blood subgroups O1 and A1, and the effect sizes of both variants were significantly larger in EOS compared with LOS. The odds ratio (OR) for rs529565, tagging O1, was 0.88 (95% confidence interval [CI]: 0.85-0.91) in EOS vs 0.96 (95% CI: 0.92-1.00) in LOS, and the OR for rs635634, tagging A1, was 1.16 (1.11-1.21) for EOS vs 1.05 (0.99-1.11) in LOS; p-values for interaction = 0.001 and 0.005, respectively. Using PRSs, we observed that greater genetic risk for VTE, another prothrombotic condition, was more strongly associated with EOS compared with LOS (p = 0.008). Discussion The ABO locus, genetically predicted blood group A, and higher genetic propensity for venous thrombosis are more strongly associated with EOS than with LOS, supporting a stronger role of prothrombotic factors in EOS.Peer reviewe
Stroke genetics informs drug discovery and risk prediction across ancestries
Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
Multi-ancestry GWAS reveals excitotoxicity associated with outcome after ischaemic stroke
During the first hours after stroke onset, neurological deficits can be highly unstable: some patients rapidly improve, while others deteriorate. This early neurological instability has a major impact on long-term outcome. Here, we aimed to determine the genetic architecture of early neurological instability measured by the difference between the National Institutes of Health Stroke Scale (NIHSS) within 6 h of stroke onset and NIHSS at 24 h. A total of 5876 individuals from seven countries (Spain, Finland, Poland, USA, Costa Rica, Mexico and Korea) were studied using a multi-ancestry meta-analyses. We found that 8.7% of NIHSS at 24 h of variance was explained by common genetic variations, and also that early neurological instability has a different genetic architecture from that of stroke risk. Eight loci (1p21.1, 1q42.2, 2p25.1, 2q31.2, 2q33.3, 5q33.2, 7p21.2 and 13q31.1) were genome-wide significant and explained 1.8% of the variability suggesting that additional variants influence early change in neurological deficits. We used functional genomics and bioinformatic annotation to identify the genes driving the association from each locus. Expression quantitative trait loci mapping and summary data-based Mendelian randomization indicate that ADAM23 (log Bayes factor = 5.41) was driving the association for 2q33.3. Gene-based analyses suggested that GRIA1 (log Bayes factor = 5.19), which is predominantly expressed in the brain, is the gene driving the association for the 5q33.2 locus. These analyses also nominated GNPAT (log Bayes factor = 7.64) ABCB5 (log Bayes factor = 5.97) for the 1p21.1 and 7p21.1 loci. Human brain single-nuclei RNA-sequencing indicates that the gene expression of ADAM23 and GRIA1 is enriched in neurons. ADAM23, a presynaptic protein and GRIA1, a protein subunit of the AMPA receptor, are part of a synaptic protein complex that modulates neuronal excitability. These data provide the first genetic evidence in humans that excitotoxicity may contribute to early neurological instability after acute ischaemic stroke. Ibanez et al. perform a multi-ancestry meta-analysis to investigate the genetic architecture of early stroke outcomes. Two of the eight genome-wide significant loci identified-ADAM23 and GRIA1-are involved in synaptic excitability, suggesting that excitotoxicity contributes to neurological instability after ischaemic stroke.Peer reviewe
COVID-19 Host Genetics Initiative. A first update on mapping the human genetic architecture of COVID-19
The COVID-19 pandemic continues to pose a major public health threat, especially in countries with low vaccination rates. To better understand the biological underpinnings of SARS-CoV-2 infection and COVID-19 severity, we formed the COVID-19 Host Genetics Initiative1. Here we present a genome-wide association study meta-analysis of up to 125,584 cases and over 2.5 million control individuals across 60 studies from 25 countries, adding 11 genome-wide significant loci compared with those previously identified2. Genes at new loci, including SFTPD, MUC5B and ACE2, reveal compelling insights regarding disease susceptibility and severity.</p