8 research outputs found

    Ozone Production in the Soberanes Smoke Haze: Implications for Air Quality in the San Joaquin Valley During the California Baseline Ozone Transport Study

    No full text
    International audienceThe Soberanes Fire burned 53,470 ha (132,127 acres) along the central California coast between 22 July and 12 October 2016, generating dense smoke and a variety of gaseous compounds that drifted eastward into the San Joaquin Valley Air Basin (SJVAB), an “extreme” nonattainment area for ozone (O3). These gases included nitrogen oxides (NOx) and volatile organic compounds, the photochemical precursors of O3. The fire started during the California Baseline Ozone Transport Study, a field campaign that brought aircraft, surface, and remote sensing measurements of O3 and related species to central California. In this paper, we use the California Baseline Ozone Transport Study measurements to assess the impact of the Soberanes Fire on ozone and particulate air quality in the SJVAB. We focus our analysis on 27 July to 2 August when the smoke haze was heaviest and the highest O3 concentrations in the SJVAB during 2016 were recorded. Our analyses suggest that while 40 to 60 ppbv of fire‐generated O3 was transported to the eastern SJVAB in the 1‐ to 3‐km‐altitude range, relatively little smoke or fire‐generated O3 reached the surface in the Visalia area

    The Fires, Asian, and Stratospheric Transport-Las Vegas Ozone Study (FAST-LVOS)

    No full text
    Abstract. The Fires, Asian, and Stratospheric Transport-Las Vegas Ozone Study (FAST-LVOS) was conducted in May and June of 2017 to study the transport of ozone (O3) to Clark County, Nevada, a marginal non-attainment area in the Southwestern U.S. (SWUS). This 6-week (20 May–30 June 2017) field campaign used lidar, ozonesonde, aircraft, and in-situ measurements in conjunction with a variety of models to characterize the distribution of O3 and related species above southern Nevada and neighbouring California, and to probe the influence of stratospheric intrusions, wildfires, and local, regional, and Asian pollution on surface O3 concentrations in Las Vegas and the surrounding area. In this paper, we describe the FAST-LVOS campaign and present case studies illustrating the influence of different transport processes on background O3 and air quality attainment in the SWUS. The measurements found elevated O3 layers above Las Vegas on more than 75 % (35 of 45) of the sample days, and show that entrainment of these layers contributed to mean 8-h average background O3 concentrations of 50–55 parts-per-billion by volume (ppbv) across southern Nevada. These background concentrations constitute 70–80 % of the current U.S. National Ambient Air Quality Standard (NAAQS) of 70 ppbv, and illustrate some of the challenges facing air quality managers tasked with O3 attainment in the SWUS during late spring and early summer. The companion paper by Zhang et al. (2020) describes the use of the AM4 and GEOS-Chem global models to estimate the impacts of transported O3 on surface air quality in the Southwestern U.S. and Intermountain West during the FAST-LVOS campaign

    The <i>Fires, Asian, and Stratospheric Transport</i>–Las Vegas Ozone Study (<i>FAST</i>-LVOS)

    No full text
    International audienceAbstract. The Fires, Asian, and Stratospheric Transport–Las Vegas Ozone Study (FAST-LVOS) was conducted in May and June of 2017 to study the transport of ozone (O3) to Clark County, Nevada, a marginal non-attainment area in the southwestern United States (SWUS). This 6-week (20 May–30 June 2017) field campaign used lidar, ozonesonde, aircraft, and in situ measurements in conjunction with a variety of models to characterize the distribution of O3 and related species above southern Nevada and neighboring California and to probe the influence of stratospheric intrusions and wildfires as well as local, regional, and Asian pollution on surface O3 concentrations in the Las Vegas Valley (≈ 900 m above sea level, a.s.l.). In this paper, we describe the FAST-LVOS campaign and present case studies illustrating the influence of different transport processes on background O3 in Clark County and southern Nevada. The companion paper by Zhang et al. (2020) describes the use of the AM4 and GEOS-Chem global models to simulate the measurements and estimate the impacts of transported O3 on surface air quality across the greater southwestern US and Intermountain West. The FAST-LVOS measurements found elevated O3 layers above Las Vegas on more than 75 % (35 of 45) of the sample days and show that entrainment of these layers contributed to mean 8 h average regional background O3 concentrations of 50–55 parts per billion by volume (ppbv), or about 85–95 µg m−3. These high background concentrations constitute 70 %–80 % of the current US National Ambient Air Quality Standard (NAAQS) of 70 ppbv (≈ 120 µg m−3 at 900 m a.s.l.) for the daily maximum 8 h average (MDA8) and will make attainment of the more stringent standards of 60 or 65 ppbv currently being considered extremely difficult in the interior SWUS
    corecore