1,226 research outputs found
Evaluation of Microwave Landing System (MLS) effect on the delivery performance of a fixed-path metering and spacing system
Metering and spacing (M & S) system's algorithms described assume an aircraft two dimensional are navigation capability. The three navigation systems compared were: very high frequency omnidirectional range/distance measuring equipment (VOR/DME) and ILS, VOR/DME and + or - 40 MLS, and VOR/DME and + or - 60 MLS. Other factors studied were M & S tentative schedule point location, route geometry effects, and approach gate location effects. Summarized results are: the MLS offers some improvement over VOR/DME and ILS if all approach routes contain computer assisted turns; pilot reaction to moving the gate closer to the runway threshold may adversely affect M & S performance; and coupling en route metering to terminal scheduling transfers most of the terminal holding to more full efficient, higher altitude en route delay
A new multi-gas constrained model of trace gas non-homogeneous transport in firn: evaluation and behaviour at eleven polar sites
Insoluble trace gases are trapped in polar ice at the firn-ice transition, at approximately 50 to 100 m below the surface, depending primarily on the site temperature and snow accumulation. Models of trace gas transport in polar firn are used to relate firn air and ice core records of trace gases to their atmospheric history. We propose a new model based on the following contributions. First, the firn air transport model is revised in a poromechanics framework with emphasis on the non-homogeneous properties and the treatment of gravitational settling. We then derive a nonlinear least square multi-gas optimisation scheme to calculate the effective firn diffusivity (automatic diffusivity tuning). The improvements gained by the multi-gas approach are investigated (up to ten gases for a single site are included in the optimisation process). We apply the model to four Arctic (Devon Island, NEEM, North GRIP, Summit) and seven Antarctic (DE08, Berkner Island, Siple Dome, Dronning Maud Land, South Pole, Dome C, Vostok) sites and calculate their respective depth-dependent diffusivity profiles. Among these different sites, a relationship is inferred between the snow accumulation rate and an increasing thickness of the lock-in zone defined from the isotopic composition of molecular nitrogen in firn air (denoted d15N). It is associated with a reduced diffusivity value and an increased ratio of advective to diffusive flux in deep firn, which is particularly important at high accumulation rate sites. This has implications for the understanding of d15N of N2 records in ice cores, in relation with past variations of the snow accumulation rate. As the snow accumulation rate is clearly a primary control on the thickness of the lock-in zone, our new approach that allows for the estimation of the lock-in zone width as a function of accumulation may lead to a better constraint on the age difference between the ice and entrapped gases
One-dimension visco-elastic modelling of wood in the process of formation to clarify the Hygrothermal Recovery behavior of tension wood
International audienceWood production on stem by deposit of concentric layers on its periphery are going along with the setting up of growth stress. Growth stress has two origins: (1) loading due to weight of the structure is applied progressively when the tree is growing; (2) cell maturation, which happened at the end of the deposit of a new layer, causes an expansion, called maturation deformation, which can’t happen freely due to the previous layer and lead to the creation of initial growth stress [1]. The growth stress can be released during cutting and also during hygrothermal treatment (HT), it can be called Hygrothermal Recovery (HTR) [2]
Cross-Over between universality classes in a magnetically disordered metallic wire
In this article we present numerical results of conduction in a disordered
quasi-1D wire in the possible presence of magnetic impurities. Our analysis
leads us to the study of universal properties in different conduction regimes
such as the localized and metallic ones. In particular, we analyse the
cross-over between universality classes occurring when the strength of magnetic
disorder is increased. For this purpose, we use a numerical Landauer approach,
and derive the scattering matrix of the wire from electron's Green's function.Comment: Final version, accepted for publication in New Journ. of Physics, 27
pages, 28 figures. Replaces the earlier shorter preprint arXiv:0910.427
Remanence effects in the electrical resistivity of spin glasses
We have measured the low temperature electrical resistivity of Ag : Mn
mesoscopic spin glasses prepared by ion implantation with a concentration of
700 ppm. As expected, we observe a clear maximum in the resistivity (T ) at a
temperature in good agreement with theoretical predictions. Moreover, we
observe remanence effects at very weak magnetic fields for the resistivity
below the freezing temperature Tsg: upon Field Cooling (fc), we observe clear
deviations of (T ) as compared with the Zero Field Cooling (zfc); such
deviations appear even for very small magnetic fields, typically in the Gauss
range. This onset of remanence for very weak magnetic fields is reminiscent of
the typical signature on magnetic susceptibility measurements of the spin glass
transition for this generic glassy system
Interferometry with Photon-Subtracted Thermal Light
We propose and implement a quantum procedure for enhancing the sensitivity
with which one can determine the phase shift experienced by a weak light beam
possessing thermal statistics in passing through an interferometer. Our
procedure entails subtracting exactly one (which can be generalized to m)
photons from the light field exiting an interferometer containing a
phase-shifting element in one of its arms. As a consequence of the process of
photon subtraction, and somewhat surprisingly, the mean photon number and
signal-to-noise ratio of the resulting light field are thereby increased,
leading to enhanced interferometry. This method can be used to increase
measurement sensitivity in a variety of practical applications, including that
of forming the image of an object illuminated only by weak thermal light
The physical and cellular conditions of the human pulmonary circulation enable thrombopoesis
Animal evidence that platelet production occurs in the lungs is growing [1]. We have investigated whether there is evidence to support pulmonary platelet production from studies using human conditions. We documented the presence of MK in the human pulmonary circulation and analysed the role of the vascular microenvironment on MK function. Our results suggest that the endothelial microenvironment favors platelet formation and that von Willebrand factor combined with appropriate physical forces in flowing blood are determinant for platelet release. We also demonstrate that MKs have the potential to change ploidy as they circulate. These findings demonstrate a new pathophysiological environment affecting platelet production. They also provide new targets for therapeutic intervention
Life cycle sustainability assessment : a tool for exercising due diligence in life cycle management
Starting from the output ‘The Future We Want’ of the Rio+20 conference 2012, the main focus of this chapter is on social responsibility (SR) in the value chain. The historical context of SR is discussed, related to the international standards as are the Guidance on Social Responsibility and the Global Reporting Initiative, linked with the management of organizations and enterprises. It is emphasized that due diligence along the value chain is seen as a requirement for claiming ‘social responsibility’. Life cycle sustainability assessment (LCSA) contributes to the assessment and life cycle management (LCM) to the follow-up of exercising due diligence, all within the context of sustainable development. The over-arching LCSA is a combination of three different life cycle assessment techniques allowing to assess the impacts along the value chain: environmental LCA, social LCA and life cycle costing
Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air
The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (εapp) for mid- and high-latitude stratospheric samples are (-2.4±0.5) ‰ and (-2.3±0.4) ‰ for CFC-11, (-12.2±1.6) ‰ and (-6.8±0.8) ‰ for CFC-12 and (-3.5±1.5) ‰ and (-3.3±1.2) ‰ for CFC-113, respectively. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere-troposphere exchange. We compare these projections to the long-term δ(37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978 – 2010) and tropospheric firn air samples from Greenland (NEEM site) and Antarctica (Fletcher Promontory site). From 1970 to the present-day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties a constant average emission isotope delta is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope delta has been affected by changes in CFC manufacturing processes, or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 ml), using a single-detector gas chromatography-mass spectrometry system
- …