659 research outputs found

    Dengue viruses binding proteins from Aedes aegypti and Aedes polynesiensis salivary glands

    Get PDF
    Dengue virus (DENV), the etiological agent of dengue fever, is transmitted to the human host during blood uptake by an infective mosquito. Infection of vector salivary glands and further injection of infectious saliva into the human host are key events of the DENV transmission cycle. However, the molecular mechanisms of DENV entry into the mosquito salivary glands have not been clearly identified. Otherwise, although it was demonstrated for other vector-transmitted pathogens that insect salivary components may interact with host immune agents and impact the establishment of infection, the role of mosquito saliva on DENV infection in human has been only poorly documented. To identify salivary gland molecules which might interact with DENV at these key steps of transmission cycle, we investigated the presence of proteins able to bind DENV in salivary gland extracts (SGE) from two mosquito species. Using virus overlay protein binding assay, we detected several proteins able to bind DENV in SGE from Aedes aegypti (L.) and Aedes polynesiensis (Marks). The present findings pave the way for the identification of proteins mediating DENV attachment or entry into mosquito salivary glands, and of saliva-secreted proteins those might be bound to the virus at the earliest step of human infection. The present findings might contribute to the identification of new targets for anti-dengue strategies

    Long-term persistence of monotypic dengue transmission in small size isolated populations, French Polynesia, 1978-2014.

    Get PDF
    Understanding the transition of epidemic to endemic dengue transmission remains a challenge in regions where serotypes co-circulate and there is extensive human mobility. French Polynesia, an isolated group of 117 islands of which 72 are inhabited, distributed among five geographically separated subdivisions, has recorded mono-serotype epidemics since 1944, with long inter-epidemic periods of circulation. Laboratory confirmed cases have been recorded since 1978, enabling exploration of dengue epidemiology under monotypic conditions in an isolated, spatially structured geographical location. A database was constructed of confirmed dengue cases, geolocated to island for a 35-year period. Statistical analyses of viral establishment, persistence and fade-out as well as synchrony among subdivisions were performed. Seven monotypic and one heterotypic dengue epidemic occurred, followed by low-level viral circulation with a recrudescent epidemic occurring on one occasion. Incidence was asynchronous among the subdivisions. Complete viral die-out occurred on several occasions with invasion of a new serotype. Competitive serotype replacement has been observed previously and seems to be characteristic of the South Pacific. Island population size had a strong impact on the establishment, persistence and fade-out of dengue cases and endemicity was estimated achievable only at a population size in excess of 175 000. Despite island remoteness and low population size, dengue cases were observed somewhere in French Polynesia almost constantly, in part due to the spatial structuration generating asynchrony among subdivisions. Long-term persistence of dengue virus in this group of island populations may be enabled by island hopping, although could equally be explained by a reservoir of sub-clinical infections on the most populated island, Tahiti

    Healthcare workers' knowledge towards Zika virus infection in Indonesia: A survey in Aceh

    Get PDF
    Objective To assess the knowledge on Zika virus infection among healthcare providers (doctors) in Aceh province, Indonesia. Methods A self-administered internet based survey was conducted from 3 May to 3 June 2016 among the members of doctor organizations in Aceh province. A set of validated, pre-tested questionnaire was used to measure knowledge regarding Zika infection and to collect a range of explanatory variables. A two-steps logistic regression analysis was employed to assess the association of participants' demographic, workplace characteristics and other explanatory variables with the knowledge. Results A total of 442 participants included in the final analysis and 35.9% of them (159) had a good knowledge on Zika infection. Multivariate model revealed that type of occupation, type of workplace, availability of access to medical journals and experience made Zika disease as differential diagnose were associated with knowledge on Zika infection. In addition, three significant source of information regarding Zika were online media (60%), medical article or medical news (16.2%) and television (13.2%). Conclusion The knowledge of the doctors in Aceh regarding Zika infection is relatively low. Doctors who have a good knowledge on Zika infection are more confident to established Zika disease as differential diagnosis in their clinical setting. Therefore, such program to increase healthcare providers' knowledge regarding Zika infection is needed to screen potential carriers of Zika infection

    Ross River virus antibody prevalence in the Fiji Islands, 2013-2015

    Get PDF
    A unique outbreak of Ross River virus (RRV) infection was reported in Fiji in 1979. In 2013, 29 RRV seroprevalence among residents was 46.5%. Of those born after 1982, 37.4% had anti-RRV 30 antibodies. Between 2013-2015, 10.9% of residents had seroconverted to RRV suggesting 31 ongoing endemic circulation of RRV in Fiji

    Ross River virus antibody prevalence in the Fiji Islands, 2013-2015

    Get PDF
    A unique outbreak of Ross River virus (RRV) infection was reported in Fiji in 1979. In 2013, 29 RRV seroprevalence among residents was 46.5%. Of those born after 1982, 37.4% had anti-RRV 30 antibodies. Between 2013-2015, 10.9% of residents had seroconverted to RRV suggesting 31 ongoing endemic circulation of RRV in Fiji

    Real-Time Assessment of Health-Care Requirements During the Zika Virus Epidemic in Martinique.

    Get PDF
    The spread of Zika virus in the Americas has been associated with a surge in Guillain-Barré syndrome (GBS) cases. Given the severity of GBS, territories affected by Zika virus need to plan health-care resources to manage GBS patients. To inform such planning in Martinique, we analyzed Zika virus surveillance and GBS data from Martinique in real time with a modeling framework that captured dynamics of the Zika virus epidemic, the risk of GBS in Zika virus-infected persons, and the clinical management of GBS cases. We compared our estimates with those from the 2013-2014 Zika virus epidemic in French Polynesia. We were able to predict just a few weeks into the epidemic that, due to lower transmission potential and lower probability of developing GBS following infection in Martinique, the total number of GBS cases in Martinique would be substantially lower than suggested by simple extrapolations from French Polynesia. We correctly predicted that 8 intensive-care beds and 7 ventilators would be sufficient to treat GBS cases. This study showcased the contribution of modeling to inform local health-care planning during an outbreak. Timely studies that estimate the proportion of infected persons that seek care are needed to improve the predictive power of such approaches

    Using paired serology and surveillance data to quantify dengue transmission and control during a large outbreak in Fiji.

    Get PDF
    Dengue is a major health burden, but it can be challenging to examine transmission and evaluate control measures because outbreaks depend on multiple factors, including human population structure, prior immunity and climate. We combined population-representative paired sera collected before and after the 2013/14 dengue-3 outbreak in Fiji with surveillance data to determine how such factors influence transmission and control in island settings. Our results suggested the 10-19 year-old age group had the highest risk of infection, but we did not find strong evidence that other demographic or environmental risk factors were linked to seroconversion. A mathematical model jointly fitted to surveillance and serological data suggested that herd immunity and seasonally varying transmission could not explain observed dynamics. However, the model showed evidence of an additional reduction in transmission coinciding with a vector clean-up campaign, which may have contributed to the decline in cases in the later stages of the outbreak
    corecore