212 research outputs found

    Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar

    Get PDF
    Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4-6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tetheredballoon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2-3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds

    Growth of GaInTlAs layers on InP by molecular beam epitaxy

    Get PDF
    International audienceGrowth of GaInTlAs alloys on InP001 has been attempted by solid source molecular beam epitaxy. Thallium incorporation into Ga 1x In x As matrices was studied as a function of substrate temperature, arsenic overpressure, matrix composition, and growth rate. At high temperatures 350 °C thallium evaporates, whereas at intermediary temperatures 270-350 °C thallium segregates into droplets on the surface. Only in the low temperature range 180-260 °C can thallium be incorporated in some conditions, leading to mirror-like surfaces. Up to 18% Tl content was incorporated into a Ga 0.70 In 0.30 As matrix and up to 40% Tl into a GaAs matrix. For these high Tl concentrations, Tl droplets are avoided and Tl incorporation is achieved only when using high arsenic pressures. However, this limits surface adatom diffusion and leads to amorphous, polycrystalline, or twinned materials. Finally, a narrow window for single-crystal growth has been found for low Tl contents 4% using optimized growth conditions with low V/III pressure ratios and high growth rates

    The Turbulent Structure of the Arctic Summer Boundary Layer During The Arctic Summer Cloud‐Ocean Study

    Get PDF
    The mostly ice covered Arctic Ocean is dominated by low‐level liquid‐ or mixed‐phase clouds. Turbulence within stratocumulus is primarily driven by cloud top cooling that induces convective instability. Using a suite of in situ and remote sensing instruments we characterize turbulent mixing in Arctic stratocumulus, and for the first time we estimate profiles of the gradient Richardson number at relatively high resolution in both time (10 min) and altitude (10 m). It is found that the mixing occurs both within the cloud, as expected, and by wind shear instability near the surface. About 75% of the time these two layers are separated by a stably stratified inversion at 100–200 m altitude. Exceptions are associated with low cloud bases that allow the cloud‐driven turbulence to reach the surface. The results imply that turbulent coupling between the surface and the cloud is sporadic or intermittent

    A new downscaling method for sub-grid turbulence modeling

    Get PDF
    In this study we explore a new way to model sub-grid turbulence using particle systems. The ability of particle systems to model small-scale turbulence is evaluated using high-resolution numerical simulations. These high-resolution data are averaged to produce a coarse-grid velocity field, which is then used to drive a complete particle-system-based downscaling. Wind fluctuations and turbulent kinetic energy are compared between the particle simulations and the high-resolution simulation. Despite the simplicity of the physical model used to drive the particles, the results show that the particle system is able to represent the average field. It is shown that this system is able to reproduce much finer turbulent structures than the numerical high-resolution simulations. In addition, this study provides an estimate of the effective spatial and temporal resolution of the numerical models. This highlights the need for higher-resolution simulations in order to evaluate the very fine turbulent structures predicted by the particle systems. Finally, a study of the influence of the forcing scale on the particle system is presented

    An in situ transmission electron microscopy study of the ion irradiation induced amorphisation of silicon by He and Xe

    Get PDF
    Transmission electron microscopy with in situ ion irradiation has been used to examine the ionbeam-induced amorphisation of crystalline silicon under irradiation with light (He) and heavy (Xe) ions at room temperature. Analysis of the electron diffraction data reveal the heterogeneous amorphisation mechanism to be dominant in both cases. The differences in the amorphisation curves are discussed in terms of intra-cascade dynamic recovery, and the role of electronic and nuclear loss mechanisms

    Recrystallization of amorphous nano-tracks and uniform layers generated by swift-ion-beam irradiation in lithium niobate.

    Get PDF
    The thermal annealing of amorphous tracks of nanometer-size diameter generated in lithium niobate (LiNbO3) by Bromine ions at 45 MeV, i.e., in the electronic stopping regime, has been investigated by RBS/C spectrometry in the temperature range from 250°C to 350°C. Relatively low fluences have been used (<1012 cm−2) to produce isolated tracks. However, the possible effect of track overlapping has been investigated by varying the fluence between 3×1011 cm−2 and 1012 cm−2. The annealing process follows a two-step kinetics. In a first stage (I) the track radius decreases linearly with the annealing time. It obeys an Arrhenius-type dependence on annealing temperature with activation energy around 1.5 eV. The second stage (II) operates after the track radius has decreased down to around 2.5 nm and shows a much lower radial velocity. The data for stage I appear consistent with a solid-phase epitaxial process that yields a constant recrystallization rate at the amorphous-crystalline boundary. HRTEM has been used to monitor the existence and the size of the annealed isolated tracks in the second stage. On the other hand, the thermal annealing of homogeneous (buried) amorphous layers has been investigated within the same temperature range, on samples irradiated with Fluorine at 20 MeV and fluences of ∌1014 cm−2. Optical techniques are very suitable for this case and have been used to monitor the recrystallization of the layers. The annealing process induces a displacement of the crystalline-amorphous boundary that is also linear with annealing time, and the recrystallization rates are consistent with those measured for tracks. The comparison of these data with those previously obtained for the heavily damaged (amorphous) layers produced by elastic nuclear collisions is summarily discussed

    Role of thermodynamic and turbulence processes on the fog life cycle during SOFOG3D experiment

    Get PDF
    In this study, we use a synergy of in situ and remote sensing measurements collected during the SOuthwest FOGs 3D experiment for processes study (SOFOG3D) field campaign in autumn and winter 2019–2020 to analyse the thermodynamic and turbulent processes related to fog formation, evolution, and dissipation across southwestern France. Based on a unique measurement dataset (synergy of cloud radar, microwave radiometer, wind lidar, and weather station data) combined with a fog conceptual model, an analysis of the four deepest fog episodes (two radiation fogs and two advection–radiation fogs) is conducted. The results show that radiation and advection–radiation fogs form under deep and thin temperature inversions, respectively. For both fog categories, the transition period from stable to adiabatic fog and the fog adiabatic phase are driven by vertical mixing associated with an increase in turbulence in the fog layer due to mechanical production (turbulence kinetic energy (TKE) up to 0.4 m2 s−2 and vertical velocity variance (σw2) up to 0.04 m2 s−2) generated by increasing wind and wind shear. Our study reveals that fog liquid water path, fog top height, temperature, radar reflectivity profiles, and fog adiabaticity derived from the conceptual model evolve in a consistent manner to clearly characterise this transition. The dissipation time is observed at night for the advection–radiation fog case studies and after sunrise for the radiation fog case studies. Night-time dissipation is driven by horizontal advection generating mechanical turbulence (TKE at least 0.3 m2 s−2 and σw2 larger than 0.04 m2 s−2). Daytime dissipation is linked to the combination of thermal and mechanical turbulence related to solar heating (near-surface sensible heat flux larger than 10 W m−2) and wind shear, respectively. This study demonstrates the added value of monitoring fog liquid water content and depth (combined with wind, turbulence, and temperature profiles) and diagnostics such as fog liquid water reservoir and adiabaticity to better explain the drivers of the fog life cycle.</p

    Risk factors associated with non-alcoholic fatty liver disease in subjects from primary care units. A case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Non alcoholic fatty liver disease (NAFL) consists in the accumulation of fat vacuoles in the cytoplasm of hepatocytes. Many etiologic factors are associated with NAFL, such as, the metabolic syndrome factors, medications, bariatric surgery, nutritional disorders. However, very little information is available on the clinical relevance of this disorder as a health problem in the general population.</p> <p>Methods and design</p> <p>The aim of the study is establish the risk factors most frequently associated with NAFL in a general adult population assigned to the primary care units and to investigate the relationship between each component of the metabolic syndrome and the risk of having a NAFL.</p> <p>A population based case-control, observational and multicenter study will be carried out in 18 primary care units from the "Area de Gestión del Barcelonés Nord y Maresme" (Barcelona) attending a population of 360,000 inhabitants and will include 326 cases and 370 controls. Cases are defined as all subjects fulfilling the inclusion criteria and with evidence of fatty liver in an abdominal ultrasonography performed for any reason. One control will be randomly selected for each case from the population, matched for age, gender and primary care center. Controls with fatty liver or other liver diseases will be excluded.</p> <p>All cases and controls will be asked about previous hepatic diseases, consumption of alcohol, smoking and drugs, and a physical examination, biochemical analyses including liver function tests, the different components of the metabolic syndrome and the HAIR score will also be performed. Paired controls will also undergo an abdominal ultrasonography.</p> <p>Discussion</p> <p>This study will attempt to determine the factors most frequently associated with the presence of NAFL investigate the relationship between the metabolic syndrome and the risk of fatty liver and study the influence of the different primary care professionals in avoiding the evolution of the disease.</p

    Recommendations of the Spanish Antibiogram Committee (COESANT) for selecting antimicrobial agents and concentrations for in vitro susceptibility studies using automated systems

    Get PDF
    Automated antimicrobial susceptibility testing devices are widely implemented in clinical microbiology laboratories in Spain, mainly using EUCAST (European Committee on Antimicrobial Susceptibility Testing) breakpoints. In 2007, a group of experts published recommendations for including antimicrobial agents and selecting concentrations in these systems. Under the patronage of the Spanish Antibiogram Committee (Comité Español del Antibiograma, COESANT) and the Study Group on Mechanisms of Action and Resistance to Antimicrobial Agents (GEMARA) from the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), and aligned with the Spanish National Plan against Antimicrobial Resistance (PRAN), a group of experts have updated this document. The main modifications from the previous version comprise the inclusion of new antimicrobial agents, adaptation of the ranges of concentrations to cover the EUCAST breakpoints and epidemiological cut-off values (ECOFFs), and the inference of new resistance mechanisms. This proposal should be considered by different manufacturers and users when designing new panels or cards. In addition, recommendations for selective reporting are also included. With this approach, the implementation of EUCAST breakpoints will be easier, increasing the quality of antimicrobial susceptibility testing data and their microbiological interpretation. It will also benefit epidemiological surveillance studies as well as the clinical use of antimicrobials aligned with antimicrobial stewardship programs

    Differential Spatial Expression and Subcellular Localization of CtBP Family Members in Rodent Brain

    Get PDF
    C-terminal binding proteins (CtBPs) are well-characterized nuclear transcriptional co-regulators. In addition, cytoplasmic functions were discovered for these ubiquitously expressed proteins. These include the involvement of the isoform CtBP1-S/BARS50 in cellular membrane-trafficking processes and a role of the isoform RIBEYE as molecular scaffolds in ribbons, the presynaptic specializations of sensory synapses. CtBPs were suggested to regulate neuronal differentiation and they were implied in the control of gene expression during epileptogenesis. However, the expression patterns of CtBP family members in specific brain areas and their subcellular localizations in neurons in situ are largely unknown. Here, we performed comprehensive assessment of the expression of CtBP1 and CtBP2 in mouse brain at the microscopic and the ultra-structural levels using specific antibodies. We quantified and compared expression levels of both CtBPs in biochemically isolated brain fractions containing cellular nuclei or synaptic compartment. Our study demonstrates differential regional and subcellular expression patterns for the two CtBP family members in brain and reveals a previously unknown synaptic localization for CtBP2 in particular brain regions. Finally, we propose a mechanism of differential synapto-nuclear targeting of its splice variants CtBP2-S and CtBP2-L in neurons
    • 

    corecore