343 research outputs found

    The transcriptional repressor protein NsrR senses nitric oxide directly via a [2Fe-2S] cluster

    Get PDF
    The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing nitric oxide (NO) in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive [2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is required for DNA binding activity

    Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys

    Get PDF
    The heterogeneous nucleation of primary Si and eutectic Si can be attributed to the presence of AlP. Although P, in the form of AlP particles, is usually observed in the centre of primary Si, there is still a lack of detailed investigations on the distribution of P within primary Si and eutectic Si in hypereutectic Al-Si alloys at the atomic scale. Here, we report an atomic-scale experimental investigation on the distribution of P in hypereutectic Al-Si alloys. P, in the form of AlP particles, was observed in the centre of primary Si. However, no significant amount of P was detected within primary Si, eutectic Si and the Al matrix. Instead, P was observed at the interface between the Al matrix and eutectic Si, strongly indicating that P, in the form of AlP particles (or AlP ‘patch’ dependent on the P concentration), may have nucleated on the surface of the Al matrix and thereby enhanced the heterogeneous nucleation of eutectic Si. The present investigation reveals some novel insights into heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys and can be used to further develop heterogeneous nucleation mechanisms based on adsorption

    Study of cosolvent-induced α-chymotrypsin fibrillogenesis: Does protein surface hydrophobicity trigger early stages of aggregation reaction?

    Get PDF
    The misfolding of specific proteins is often associated with their assembly into fibrillar aggregates, commonly termed amyloid fibrils. Despite the many efforts expended to characterize amyloid formation in vitro, there is no deep knowledge about the environment (in which aggregation occurs) as well as mechanism of this type of protein aggregation. Alpha-chymotrypsin was recently driven toward amyloid aggregation by the addition of intermediate concentrations of trifluoroethanol. In the present study, approaches such as turbidimetric, thermodynamic, intrinsic fluorescence and quenching studies as well as chemical modification have been successfully used to elucidate the underlying role of hydrophobic interactions (involved in early stages of amyloid formation) in α-chymotrypsin-based experimental system. © 2009 Springer Science+Business Media, LLC

    Imaging Chromophores With Undetectable Fluorescence by Stimulated Emission Microscopy

    Get PDF
    Fluorescence, that is, spontaneous emission, is generally more sensitive than absorption measurement, and is widely used in optical imaging. However, many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. Here we use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, and report a new contrast mechanism for optical microscopy. In a pump-probe experiment, on photoexcitation by a pump pulse, the sample is stimulated down to the ground state by a time-delayed probe pulse, the intensity of which is concurrently increased. We extract the miniscule intensity increase with shot-noise-limited sensitivity by using a lock-in amplifier and intensity modulation of the pump beam at a high megahertz frequency. The signal is generated only at the laser foci owing to the nonlinear dependence on the input intensities, providing intrinsic three-dimensional optical sectioning capability. In contrast, conventional one-beam absorption measurement exhibits low sensitivity, lack of three-dimensional sectioning capability, and complication by linear scattering of heterogeneous samples. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distributions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging.Chemistry and Chemical Biolog

    Restricted by borders: trade-offs in transboundary conservation planning for large river systems

    Get PDF
    Effective conservation of freshwater biodiversity requires accounting for connectivity and the propagation of threats along river networks. With this in mind, the selection of areas to conserve freshwater biodiversity is challenging when rivers cross multiple jurisdictional boundaries. We used systematic conservation planning to identify priority conservation areas for freshwater fish conservation in Hungary (Central Europe). We evaluated the importance of transboundary rivers to achieve conservation goals by systematically deleting some rivers from the prioritization procedure in Marxan and assessing the trade-offs between complexity of conservation recommendations (e.g., conservation areas located exclusively within Hungary vs. transboundary) and cost (area required). We found that including the segments of the largest transboundary rivers (i.e. Danube, Tisza) in the area selection procedure yielded smaller total area compared with the scenarios which considered only smaller national and transboundary rivers. However, analyses which did not consider these large river segments still showed that fish diversity in Hungary can be effectively protected within the country’s borders in a relatively small total area (less than 20 % of the country’s size). Since the protection of large river segments is an unfeasible task, we suggest that transboundary cooperation should focus on the protection of highland riverine habitats (especially Dráva and Ipoly Rivers) and their valuable fish fauna, in addition to the protection of smaller national rivers and streams. Our approach highlights the necessity of examining different options for selecting priority areas for conservation in countries where transboundary river systems form the major part of water resources.Full Tex

    Oxytocin and cholecystokinin secretion in women with colectomy

    Get PDF
    BACKGROUND: Cholecystokinin (CCK) concentrations in plasma have been shown to be significantly higher in colectomised subjects compared to healthy controls. This has been ascribed to reduced inhibition of CCK release from colon. In an earlier study CCK in all but one woman who was colectomised, induced release of oxytocin, a peptide present throughout the gastrointestinal (GI) tract. The aim of this study was thus to examine if colectomised women had a different oxytocin response to CCK compared to healthy controls. METHODS: Eleven women, mean age 34.4 ± 2.3 years, who had undergone colectomy because of ulcerative colitis or constipation were studied. Eleven age-matched healthy women served as controls. All subjects were fasted overnight and given 0.2 μg/kg body weight of CCK-8 i.v. in the morning. Samples were taken ten minutes and immediately before the injection, and 10, 20, 30, 45, 60, 90 and 120 min afterwards. Plasma was collected for measurement of CCK and oxytocin concentrations. RESULTS: The basal oxytocin and CCK concentrations in plasma were similar in the two groups. Intravenous injection of CCK increased the release of oxytocin from 1.31 ± 0.12 and 1.64 ± 0.19 pmol/l to 2.82 ± 0.35 and 3.26 ± 0.50 pmol/l in controls and colectomised women, respectively (p < 0.001). Given the short half-life of CCK-8 in plasma, the increased concentration following injection could not be demonstrated in the controls. On the other hand, in colectomised women, an increase of CCK in plasma was observed for up to 20 minutes after the injection, concentrations increasing from 1.00 ± 0.21 to a maximum of 1.81 ± 0.26 pmol/l (p < 0.002). CONCLUSION: CCK stimulates the release of oxytocin in women. There is no difference in plasma concentrations between colectomised and controls. However, colectomy seems to reduce the metabolic clearance of CCK. The hyperCCKemia in patients who had undergone colectomy is consequently not only dependent on CCK release, but may also depend on reduced clearance

    Hydrodynamic properties of cyclodextrin molecules in dilute solutions

    Get PDF
    Three well-known representatives of the cyclodextrin family were completely characterized by molecular hydrodynamics methods in three different solvents. For the first time the possibility of an estimation of velocity sedimentation coefficients s between 0.15 and 0.5 S by the numerical solution of the Lamm equation is shown. Comparison of the experimental hydrodynamic characteristics of the cyclodextrins with theoretical calculations for toroidal molecules allows an estimation of the thickness of the solvent layers on the surface of cyclodextrin molecules

    Ribosome formation from subunits studied by stopped-flow and Rayleigh light scattering

    Get PDF
    Light scattering and standard stopped-flow techniques were used to monitor rapid association of ribosomal subunits during initiation of eubacterial protein synthesis. The effects of the initiation factors IF1, IF2, IF3 and buffer conditions on subunit association were studied along with the role of GTP in this process. The part of light scattering theory that is essential for kinetic measurements is high-lighted in the main text and a more general treatment of Rayleigh scattering from macromolecules is given in an appendix

    Association study of genetic variants of pro-inflammatory chemokine and cytokine genes in systemic lupus erythematosus

    Get PDF
    BACKGROUND: Several lines of evidence suggest that chemokines and cytokines play an important role in the inflammatory development and progression of systemic lupus erythematosus. The aim of this study was to evaluate the relevance of functional genetic variations of RANTES, IL-8, IL-1α, and MCP-1 for systemic lupus erythematosus. METHODS: The study was conducted on 500 SLE patients and 481 ethnically matched healthy controls. Genotyping of polymorphisms in the RANTES, IL-8, IL-1α, and MCP-1 genes were performed using a real-time polymerase chain reaction (PCR) system with pre-developed TaqMan allelic discrimination assay. RESULTS: No significant differences between SLE patients and healthy controls were observed when comparing genotype, allele or haplotype frequencies of the RANTES, IL-8, IL-1α, and MCP-1 polymorphisms. In addition, no evidence for association with clinical sub-features of SLE was found. CONCLUSION: These results suggest that the tested functional variation of RANTES, IL-8, IL-1α, and MCP-1 genes do not confer a relevant role in the susceptibility or severity of SLE in the Spanish population
    corecore