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Abstract

The regulatory protein NsrR, a member of the Rrf2 family of transcription repressors, is specifically dedicated to sensing
nitric oxide (NO) in a variety of pathogenic and non-pathogenic bacteria. It has been proposed that NO directly modulates
NsrR activity by interacting with a predicted [Fe-S] cluster in the NsrR protein, but no experimental evidence has been
published to support this hypothesis. Here we report the purification of NsrR from the obligate aerobe Streptomyces
coelicolor. We demonstrate using UV-visible, near UV CD and EPR spectroscopy that the protein contains an NO-sensitive
[2Fe-2S] cluster when purified from E. coli. Upon exposure of NsrR to NO, the cluster is nitrosylated, which results in the loss
of DNA binding activity as detected by bandshift assays. Removal of the [2Fe-2S] cluster to generate apo-NsrR also resulted
in loss of DNA binding activity. This is the first demonstration that NsrR contains an NO-sensitive [2Fe-2S] cluster that is
required for DNA binding activity.
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Introduction

Nitric oxide (NO) is a highly reactive and toxic free radical gas

that can freely diffuse into cells and attack the redox centers of

proteins. Human macrophages produce NO as a very early line of

defense against invading bacterial pathogens. Soil bacteria are

exposed to NO produced by denitrifying microbes and by the NO

synthases of plants and microbes. Bacteria have evolved specific

NO sensor proteins that regulate the expression of enzymes

required for rapid detoxification of NO, usually by reduction to

nitrous oxide (N2O), a greenhouse gas 300 times more potent than

CO2 [1]. Understanding the ways in which bacteria sense and

respond to NO is fundamentally important and has serious

implications for human health, agriculture and the environment.

The Gram-negative bacterium Escherichia coli encodes several

proteins that are known to sense NO directly, including the [4Fe-

4S] oxygen sensing transcription factor FNR [2] and the [2Fe-2S]

transcription factor SoxR [3]. However, two proteins appear to be

dedicated solely to sensing NO in E. coli. The first is NorR, which

senses NO directly through a mononuclear non-heme iron center

[4] and responds by switching on expression of the flavorubre-

doxin NorVW to detoxify NO [5,6,7]. More recently a second

protein, named NsrR [8], was shown to sense NO in E. coli [9] and

to control a regulon of at least 30 genes [10]. This regulon includes

hmp, which encodes an NO detoxifying flavohaemoglobin that

converts NO to N2O or to nitrate (NO3
2) [11]. NsrR, unlike

NorR, appears to be a global regulator of NO-induced stress and

has been identified and studied in a wide range of Gram-negative

and Gram-positive bacteria including Bacillus subtilis [12],

Salmonella enterica [13], and the obligate human pathogens Neisseria

meningitidis [14] and N. gonorrhoeae [15]. NsrR belongs to the Rrf2

family [16] that includes the [2Fe-2S] containing transcription

factor IscR and the iron regulator RirA [17,18]. As a result it has

been predicted that NsrR might also contain a [2Fe-2S] cluster

that can sense NO directly.

NsrR homologues are encoded in many Gram-positive soil

bacteria by genes that are usually linked to hmp [16]. To date,

studies of NsrR have been restricted to the in vivo analysis of target

genes in pathogenic bacteria such as N. meningitidis [14] or model

organisms such as E. coli [9,10] and B. subtilis [12]. Multiple

sequence alignments revealed three conserved cysteine residues in

the primary sequences of NsrR proteins (Fig. 1A) that could

potentially act as ligands for a [2Fe-2S] cluster. Despite this, the

presence of an NO-sensing metal center in NsrR has yet to be

shown experimentally.

Streptomyces is a genus of ubiquitous saprophytic soil bacteria best

known for producing useful secondary metabolites [19]. The

model organism for the genus, S. coelicolor, an obligate aerobe,

encodes two Hmp homologues (HmpA1 and HmpA2), which

presumably detoxify NO by oxidising it to NO3
2 or reducing it to

N2O. The hmpA1 gene is adjacent to a gene (SCO7427) encoding

the only Rrf2 type protein encoded by the S. coelicolor genome

(Fig. 1B). SCO7427 has previously been identified as an NsrR

homologue using bioinformatics analysis [16] and alignment with
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other NsrR homologues shows that it contains the three conserved

cysteine residues predicted to ligate the [2Fe-2S] cluster of NsrR

(Fig. 1A). Here we report in vitro studies of S. coelicolor NsrR. We

demonstrate that the protein can accommodate a [2Fe-2S] cluster,

which is stable to atmospheric oxygen. We show that this form of

the protein binds specifically to the promoter regions of hmpA1 and

hmpA2. The [2Fe-2S] cluster reacts readily with NO, resulting in

the formation of iron-nitrosyl species and a concomitant loss of

specific DNA-binding activity.

Results and Discussion

NsrR contains an oxygen-insensitive [2Fe-2S] cluster
Over-expression of S. coelicolor NsrR in E. coli resulted in cell

pellets that were dark brown in color. This color persisted during a

two-step purification of NsrR by heparin affinity chromatography

and gel filtration on Superdex 75, suggesting the presence of iron

in the protein. The CD spectrum of the purified protein displayed

bands in the region 260–750 nm with three positive features, lmax

324, 445, 490 nm, together with two negative features, lmax 375

and 550 nm (Fig. 2A). The bands were of similar energies and the

same order of magnitude as those observed for other [2Fe-2S]

cluster containing proteins [20,21,22], most notably the Rieske

protein BphF from Burkholderia sp [20]. UV visible spectroscopy

(Fig. 2B, solid line) of the purified protein also revealed features

characteristic of an [2Fe-2S] protein, with major bands at 325 and

420 nm and shoulders at 460 and 550 nm [23]. Iron and sulfide

analysis revealed the presence of 0.960.17 irons per sulfide, close

to the expected ratio of 1:1 for a [2Fe-2S] cluster. Furthermore,

protein analysis revealed that cluster incorporation was incom-

plete, with an average of 28% [2Fe-2S] cluster incorporation. This

observation is commonly associated with over-expressed iron

sulfur proteins. We note that aerobically purified B. subtilis NsrR

was found to be brownish in color immediately following

purification and had an absorption spectrum indicative of an iron

sulfur protein. However, the color rapidly faded under aerobic

conditions [12] and no further characterization was reported.

Surprisingly, the [2Fe-2S] cluster of S. coelicolor was stable in the

presence of atmospheric oxygen, although dithiothreitol was

required to maintain stability. NsrR did not give rise to EPR

signals (Fig. 2C, top), consistent with the presence of an oxidized

[2Fe-2S]2+ cluster. The addition of sodium dithionite did not

generate an EPR active species (data not shown). The addition of

up to 20 mM sodium dithionite had little effect on the UV-visible

absorbance spectrum of NsrR (data not shown), indicating that the

cluster is stable in the presence of dithionite. We conclude that the

Figure 1. NsrR and the hmpA genes in S. coelicolor. (A). Alignment of E. coli IscR with NsrR sequences from Bacillus subtilis (Bsu), E. coli (Eco), S.
coelicolor (Sco), Salmonella enterica Typhimurium (Sen), Vibrio vulnificus (Vvu) and Yersinia pestis (Ype). The helix-turn-helix DNA binding motif is
highlighted. The three conserved cysteine residues predicted to ligate a [2Fe-2S] cluster are boxed. (B). SCO7427 is the only gene encoding an Rrf2
family member in S. coelicolor. The coding sequence of SCO7427 stops 74 base pairs upstream of the hmpA1 start codon and is predicted to encode
an NsrR homologue [16]. Both hmpA genes contain matches to the NsrR consensus for Bacillales and Streptomyces upstream of their translational
start codons (boxes) [16].
doi:10.1371/journal.pone.0003623.g001

NsrR Is an Iron Sulfur Protein
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cluster has a reduction potential too low to be effectively reduced

by this powerful reductant.

[2Fe-2S] NsrR reacts readily with NO
Exposure of the protein to NO resulted in an EPR spectrum

featuring signals at g = 2.039, 2.0231 and 2.013 (Fig. 2C, bottom).

These g-values are characteristic of a S = K dinitrosyl iron

complex (DNIC) and, importantly, are essentially identical to those

previously reported for a DNIC coordinated by cysteine thiolates,

Fe(NO)2(Cys)2 [24,25,26]. Similar g-values were also reported

following reaction with NO of the iron-sulfur containing proteins

aconitase, SoxR and FNR [2,3,23]. Quantification of the EPR

signal in Fig. 2C revealed that only 8.89% of the iron in the sample

was detected in the EPR experiments. This indicates that the

majority of the iron was in an EPR-silent form.

Significant changes were also observed in the UV-visible

spectrum upon treatment with NO such that features character-

istic of the [2Fe-2S] cluster were lost (Fig. 2B, dashed line). Thiol-

ligated DNIC species have characteristic absorbance properties:

the mononuclear EPR-active DNIC has an absorption maximum

at 397 nm while the EPR-silent dinuclear DNIC (in which two

iron ions are each ligated by two terminal NO molecules and are

bridged by two thiols) gives rise to absorption maxima at 310 and

362 nm [27]. The NO-treated NsrR spectrum (Fig. 2B) is

consistent with a mixture of mononuclear and dinuclear thiol-

coordinated DNIC species, with a shoulder at ,310 nm

characteristic of the dinuclear DNIC, and broad absorbance out

into the visible region consistent with a superposition of

mononuclear and dinuclear DNIC absorption envelopes. A

proportion of mononuclear DNIC species may be in an EPR-

silent state [28]. We note that a similar mixture of DNIC species

was observed for NO-treated FNR [2]. Together, these data

demonstrate that NO nitrosylates the [2Fe-2S] cluster, resulting in

the formation of cysteine thiolate-bound DNIC species. Both the

NO treated and untreated NsrR proteins eluted at the same

volume on gel filtration (data not shown) suggesting both proteins

have the same hydrodynamic radius and that NsrR is not

denatured upon treatment with NO.

Nitric oxide abolishes the DNA binding activity of NsrR
To identify potential NsrR target genes, the S. coelicolor genome

was searched with the NsrR promoter matrix for Bacillales and

Streptomyces spp (e-cutoff score = 10.7) [16]. A total of 322 genes

have potential NsrR binding sites within 70 base pairs of DNA

upstream of their translational start codons, including both the

hmpA1 and hmpA2 genes (Fig. 1B). To investigate whether the

purified NsrR protein can bind to these putative sites, bandshift

assays were performed using radiolabelled DNA fragments

carrying the hmpA1 and hmpA2 promoters. The probes were

incubated with NsrR diluted in Tris buffer or Tris buffer saturated

with NO and the reaction mixtures were separated on a non-

denaturing polyacrylamide gel (Fig. 3A). The data clearly

Figure 2. CD, UV-visible and EPR spectroscopy of purified NsrR.
(A). The recorded CD spectrum, representing an average of nine
individual scans, displays three positive features, lmax 324, 445, 490 nm,
together with two negative features, lmax 375 and 550 nm, similar to
other [2Fe-2S] cluster containing proteins [20,21]. The buffer was
75 mM Tris, 425 mM NaCl, 2.5 mM DTT, 2.5% Glycerol, pH 7.5. (B). UV-
visible spectra of purified [2Fe-2S] NsrR in 50 mM Tris pH 7.0, 100 mM
NaCl buffer or 50 mM Tris pH 7.0, 100 mM NaCl buffer saturated with
NO (2 mM), as indicated. UV visible spectroscopy of the purified protein
revealed a spectrum characteristic of a [2Fe-2S] cluster containing
protein, with major bands at 325 and 420 nm and shoulders present at
460 and 550 nm on the UV visible spectrum [22 Cammack 1980]. The

inset spectrum at 65 magnification shows clearly that the shoulder at
420 nm is lost after exposure to NO (dashed line). (C). X-band EPR
spectrum of as isolated NsrR (upper spectrum) and NsrR following
exposure to NO (lower spectrum). Measurement conditions were:
temperature 10 K; microwave power 2 mW; microwave frequency
9.43755 GHz; modulation amplitude 4 G. NsrR (2.25 uM) was in buffer A
and decomposed MAHMA NONOate solutions were prepared in
100 mM Tris-HCl pH 8.0. The purified NsrR protein is EPR silent (top),
indicative of an oxidised [2Fe-2S] cluster. Exposure to NO results in a
strong signal indicating the formation of a mononuclear dinitrosyl iron
complex (bottom, g values are indicated).
doi:10.1371/journal.pone.0003623.g002
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Figure 3. DNA binding assays with the hmpA1 and hmpA2 promoters and purified NsrR protein. (A). Bandshift assay using 200 base pair
restriction fragments (20 ng per reaction) carrying the hmpA1 and hmpA2 promoters, as indicated, and purified [2Fe-2S] NsrR in 50 mM Tris pH 7.0,
100 mM NaCl buffer or 50 mM Tris pH 7.0, 100 mM NaCl buffer saturated with NO (2 mM), as indicated. Binding is abolished by addition of NO
saturated buffer to purified NsrR. (B). Bandshift assay using a 200 base pair restriction fragment (20 ng per reaction) carrying the hmpA1 promoter
with either EDTA:ferricyanide treated apo-NsrR or holo [2Fe-2S] NsrR as indicated in 50 mM Tris pH 7.0, 100 mM NaCl buffer. The apo-form of the
protein is unable to bind to the hmpA1 promoter indicating that the cluster is required for DNA binding activity. (C). Sedimentation equilibrium of
oligonucleotides in the presence and absence of purified NsrR. The sedimentation of each sample was monitored at 260 nm and fitted to a single

NsrR Is an Iron Sulfur Protein
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demonstrate that NsrR can form a complex with the hmpA1 and

hmpA2 promoters. NsrR was unable to bind to DNA fragments

lacking an NsrR binding site (data not shown). Importantly, DNA

binding to the hmpA1 and hmpA2 promoters was abolished by NO,

demonstrating that NsrR DNA-binding activity is modulated in

response to NO. Treatment of the protein with EDTA and

ferricyanide [29] resulted in loss of the cluster (as judged from the

complete loss of cluster-associated UV visible absorption features,

data not shown). Bandshift assays demonstrated that apo-NsrR

lacks DNA binding activity (Fig. 3B). A similar loss of DNA

binding activity was observed upon addition of the iron chelator

bipyridyl to holo NsrR (data not shown). Therefore, we conclude

that it is the NO-reactive [2Fe-2S] containing form of NsrR that

binds the hmpA1 and hmpA2 promoters.

NsrR binds to DNA as a homodimer
To determine the oligomeric state of [2Fe-2S] NsrR we carried

out sedimentation equilibrium experiments at three different

speeds using excess NsrR incubated with 30 bp double-stranded

oligonucleotide probes carrying either the hmpA1 or hmpA2 NsrR

binding sites. Oligonucleotides absorb strongly at 260 nm, with an

approximate e260 of 370 mM21 cm21, while NsrR has a smaller

e260 of ,9.9 mM21 cm21. This means that even though the NsrR

protein is in excess in these experiments, it is the molecular weight

of the DNA and DNA-protein complexes that are being measured

at 260 nm. A molecular weight of 17.460.4 kDa was measured

for the hmpA2 probe, which increased to 47.360.9 kDa on

incubation with NsrR (Fig. 3B). Since NsrR has a molecular

weight of 15.9 kDa, this is consistent with NsrR binding to DNA

as a homodimer. The molecular weight of hmpA1 in the presence

of NsrR increased to 45.060.6 kDa (data not shown). NsrR was

unable to bind to the control probe carrying nsrR coding sequence

and lacking an NsrR binding site (data not shown) confirming that

the interaction is specific.

The role of NsrR in Streptomyces
Members of the genus Streptomyces are widespread in soil and are

likely exposed to NO produced by microbial denitrification and by

the NO synthases of plants and microbes. S. coelicolor is resistant to

concentrations of up to 6.25 mM of the NO releasing compound

S-nitrosoglutathione (GSNO) suggesting it is resistant to NO (data

not shown). In similar experiments with Salmonella the growth of

the wild-type strain was inhibited by 3 mM GSNO [13]. NsrR is

the only known NO sensor encoded by the S. coelicolor genome

suggesting it mediates the response to NO by switching on NsrR

dependent genes, including the NO detoxification genes hmpA1

and hmpA2. Of the 322 putative NsrR dependent promoters in S.

coelicolor, the hmpA1 and hmpA2 promoters are ranked 233 and 3,

respectively, where a ranking of 1 indicates the closest match to the

consensus. Both are bound specifically by NsrR in vitro (Fig. 3)

suggesting that many, if not all, of the 322 promoters might be

NsrR targets. If this is the case then S. coelicolor has a large NsrR

regulon compared with that of E. coli [10] and N. meningitidis [14].

Putative targets in S. coelicolor include oxidoreductase, hydrolase,

ferredoxin, heme oxygenase and DNA repair genes. More

unexpected targets include cell wall repair, antibiotic biosynthesis

and sporulation genes and several transposases suggesting

induction of a global stress response to NO. Furthermore, we

have identified 18 promoters that have two NsrR binding sites

within 70 bp of the translation start codon. An example of this is

the promoter of SCO0465, which encodes a non-heme chloroper-

oxidase, a protein implicated in antibiotic production and the

oxidative stress response [30,31].

Concluding remarks
The oxygen stable NsrR protein from S. coelicolor is an excellent

model for studying the NO sensing mechanism of NsrR proteins at

the molecular level. We have demonstrated for the first time that

NsrR contains a [2Fe-2S] cluster that is required for DNA

binding. This cluster is sensitive to NO, reacting to form

mononuclear and dinuclear DNIC species. The nitrosylated form

of the protein is unable to bind DNA, clearly indicating a possible

mechanism by which NsrR regulates gene expression in response

to NO. Future work will be aimed at further characterizing NsrR

and identifying its target genes in vivo in S. coelicolor.

Materials and Methods

Purification of NsrR
The nsrR gene was amplified from S. coelicolor genomic DNA

using primers nsrRFor (59-CATATGCGGTTGACGAAGTT-

CAC) and nsrRRev (59-TCATCCCGAGGGGCGGTC), cloned

into pUC19 for sequencing and then sub-cloned into pET21a to

construct plasmid pNsrR. E. coli strain BL21 was transformed with

pNsrR and single transformant colonies were inoculated into

3610 ml LB medium and grown overnight with shaking at 37uC.

The overnight cultures were used to inoculate 361 liter LB in

2.5 liter flasks and cultures were grown with shaking at 37uC to

mid log phase. Following induction with 0.1 mM IPTG, and

further incubation with shaking at 30uC for 2.5 hours, cells were

harvested, resuspended in buffer A (100 mM Tris-HCl pH 8.0,

50 mM NaCl, 5 mM DTT) to a total volume of 40 ml and passed

three times through a French pressure cell at 1000 Psi. The crude

lysate was then centrifuged in a Sorvall SS-34 rotor at 18,000 rpm

for 45 minutes to generate a clarified NsrR-containing extract.

The clarified extracts were applied to a 5 ml HiTrap Heparin HP

column (GE Healthcare) at room temperature and the column was

washed in buffer A at 5 ml/min until the UV trace became stable.

Proteins were eluted using a gradient of buffer B (100 mM Tris-

HCl pH 8.0, 1 M NaCl, 5 mM DTT) equivalent to 20 column

volumes. Fractions containing NsrR were identified by their dark

brown color and by SDS-PAGE. The most concentrated fractions

were applied to a Superdex 75 26/60 column (GE Healthcare)

using a 2 ml superloop at a flowrate of 1.5 ml/min. Fractions

(1.5 ml) were collected and analysed by SDS-PAGE; those

containing pure NsrR were pooled and stored at 220uC in buffer

B+5% glycerol until use. Apo-NsrR was prepared by incubating

the purified protein with EDTA and ferricyanide in a molar ratio

of protein:EDTA:ferricyanide (1:50:20) at 25uC for 20 minutes

[29] before buffer exchanging the protein with buffer A. Loss of

cluster was verified by measuring the UV-visible absorbance

spectrum of the treated protein, as described below. Bipyridyl

treatment of purified NsrR (10 mM) was carried out at a final

bipyridyl concentration of 1 mM in DNA binding buffer (10 mM

Tris-HCl, pH 7.5, 60 mM KCl) on ice for 30 minutes. The

protein was then used directly in bandshift reactions (see below).

component model as described in Materials and Methods. (Left) Lower panel: absorbance profile of 2 mM hmpA2 and 10 mM NsrR in 50 mM Tris-HCl
pH 7.0, 100 mM NaCl after centrifugation at 16,000 (%), 18,000 (O) and 20,000 (D) rpm. Upper panel: Residual profile of the difference between the
data and fitted curves. (Right) Lower panel: absorbance profile of 2 mM hmpA2 in 50 mM Tris-HCl pH 7.0, 100 mM NaCl after centrifugation at 16,000
(%), 18,000 (O) and 20,000 (D) rpm. Upper panel: Residual profile of the difference between the data and fitted curves.
doi:10.1371/journal.pone.0003623.g003

NsrR Is an Iron Sulfur Protein
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Near UV- CD, UV visible CD, UV-visible absorbance and
EPR spectroscopy

NsrR was exchanged into buffer C (50 mM Tris pH 7.0,

100 mM NaCl) to remove excess DTT. A Jasco J-810 spectro-

photometer, scanning at 200 nm min21, was used to record the

CD spectrum of NsrR using a standard 1 cm cuvette. The UV-

visible absorbance spectrum of a 200 mL sample of NsrR was

measured between 250 and 600 nm on a Hitachi V-3310 dual

beam spectrophotometer. After recording the spectrum of the

oxidised protein 10 mL of a 2 mM NO stock solution was added to

give a final concentration of 100 mM NO in the cuvette. The

spectrum of the NO incubated NsrR was immediately recorded

and corrected. Absorbance traces were normalized to account for

the small increase in volume after addition of NO.

X-band EPR spectra were recorded on a Bruker ELEXSYS 500

fitted with a Bruker Super-High-Q Cavity: ER 4122SHQE and the

temperature was controlled using an Oxford Instruments ESR-9

flow cryostat. Spectra were recorded at 10 K, with a frequency of

9.437 GHz, power of 2 mW. 150 mL of NsrR (2.25 mM) was either

mixed with 50 mL of NO saturated buffer C or with 50 mL of

decomposed 100 mM MAHMA-NONOate to ensure an excess of

NO. In samples where NO was omitted, 50 mL of buffer C was

added as a control. Spin quantification was carried out using the

method of Aasa and Vänngård as described previously, using 1 mM

of aqueous Cu(II)(H2O)6 as a concentration standard [32,33].

Bandshift assays
DNA fragments carrying the hmpA1 and hmpA2 promoters were

PCR amplified using S. coelicolor genomic DNA with primers

phmpA1F (59-GACGGACCGCCCCTCGGGA), phmpa1R (59-

GCGATGTCACCGATGGCCGCT), phmpA2F (59-TCCGG-

CCGCTGTCCGGTCT) and phmpa2R (59-GATCGTGCC-

GAGCGAGGCT) and cloned into pUC19 for sequencing. The

fragments were excised from pUC19 with EcoRI and HindIII, gel

purified twice and ,1 mg of each fragment was radiolabelled using

Klenow and a mixture of [a35S] dATP (Perkin Elmer) and cold

dCTP, dGTP and dTTP for 15 minutes at room temperature.

Radio-labelled probes were purified on Qiagen nucleotide removal

columns and stored at 220uC. Purified NsrR protein was diluted in

50 mM Tris-HCl (pH 7.0) buffer or 50 mM Tris-HCl (pH 7.0)

buffer saturated with NO gas (2 mM NO solution), to a final

concentration of 500 nM. Bandshift reactions (10 mL) containing

,20 ng radiolabelled probe, 10 mM Tris-HCl, pH 7.5, 60 mM KCl

were incubated with and without NsrR protein on ice for 2 minutes.

Loading dye (2 mL) was added and reaction mixtures were separated

on 7.5% polyacrylamide gels in 16Tris-Borate-EDTA buffer in a

Mini Protean III system (BioRad) at 100 volts for 1 hour and then

dried and exposed to XRay film overnight.

Analytical ultracentrifugation
Oligonucleotides carrying either the hmpA1 binding site (hmpA1

For 59-CTAAAACACGAATATCATCTACCAATTAAG and

hmpA1 Rev 59-CTTAATTGGTAGATGATATTCGTGTTT-

TAG), hmpA2 binding site (hmpA2 For 59-GGAAAACAAG-

CATCTGAGATCCCAGTTCGG and hmpA2 Rev 59- CCGA-

ACTGGGATCTCAGATGCTTGTTTTCC) or no NsrR bind-

ing site (Control For 59-CCGCCTGCAGGCCCTGGGTGTG

and Control Rev 59- CACACCCAGGGCCTGCAGGCGG)

were annealed by heating to 94uC for 5 minutes and cooling to

55uC for 5 minutes. The double stranded oligonucleotides were

then used as probes. The calculated molecular weights of the

double stranded hmpA1, hmpA2 and Control oligonucleotides were

18.4 kDa, 18.4 kDa and 13.5 kDa respectively, and the partial

specific volume (v-bar) of the oligonucleotide was estimated as

0.55 mL g21 [33]. The molecular weight of the monomeric NsrR

polypeptide was calculated as 15.9 kDa and v-bar as 0.74 mL g21.

Sedimentation equilibrium experiments were performed in a

Beckman Optima XL-I analytical ultracentrifuge equipped with

absorbance optics and an An50Ti rotor. Samples containing 2 mM

oligonucleotide, 10 mM monomeric NsrR in 50 mM Tris pH 8.0,

100 mM NaCl, 1 mM dithiothreitol were loaded into charcoal-

filled Epon double sector cells fitted with quartz windows. 110 mL

of sample was loaded into the sample sector and 120 mL of buffer

was loaded into the reference sector. Samples were centrifuged at

speeds of 16,000, 18,000 and 20,000 rpm and the absorbance was

recorded at 260 nm. Data analysis was executed using Ultrascan II

[34] where 3 scans at 3 different speeds were simultaneously fitted

to a one-component model. Fitting of a single scan at 3 speeds was

used to measure the standard error of the obtained data.
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