3,497 research outputs found
Stretching an heteropolymer
We study the influence of some quenched disorder in the sequence of monomers
on the entropic elasticity of long polymeric chains. Starting from the
Kratky-Porod model, we show numerically that some randomness in the favoured
angles between successive segments induces a change in the elongation versus
force characteristics, and this change can be well described by a simple
renormalisation of the elastic constant. The effective coupling constant is
computed by an analytic study of the low force regime.Comment: Latex, 7 pages, 3 postscript figur
A variational principle for stationary, axisymmetric solutions of Einstein's equations
Stationary, axisymmetric, vacuum, solutions of Einstein's equations are
obtained as critical points of the total mass among all axisymmetric and
symmetric initial data with fixed angular momentum. In this
variational principle the mass is written as a positive definite integral over
a spacelike hypersurface. It is also proved that if absolute minimum exists
then it is equal to the absolute minimum of the mass among all maximal,
axisymmetric, vacuum, initial data with fixed angular momentum. Arguments are
given to support the conjecture that this minimum exists and is the extreme
Kerr initial data.Comment: 21 page
Reachability in Parametric Interval Markov Chains using Constraints
Parametric Interval Markov Chains (pIMCs) are a specification formalism that
extend Markov Chains (MCs) and Interval Markov Chains (IMCs) by taking into
account imprecision in the transition probability values: transitions in pIMCs
are labeled with parametric intervals of probabilities. In this work, we study
the difference between pIMCs and other Markov Chain abstractions models and
investigate the two usual semantics for IMCs: once-and-for-all and
at-every-step. In particular, we prove that both semantics agree on the
maximal/minimal reachability probabilities of a given IMC. We then investigate
solutions to several parameter synthesis problems in the context of pIMCs --
consistency, qualitative reachability and quantitative reachability -- that
rely on constraint encodings. Finally, we propose a prototype implementation of
our constraint encodings with promising results
On the existence of initial data containing isolated black holes
We present a general construction of initial data for Einstein's equations
containing an arbitrary number of black holes, each of which is instantaneously
in equilibrium. Each black hole is taken to be a marginally trapped surface and
plays the role of the inner boundary of the Cauchy surface. The black hole is
taken to be instantaneously isolated if its outgoing null rays are shear-free.
Starting from the choice of a conformal metric and the freely specifiable part
of the extrinsic curvature in the bulk, we give a prescription for choosing the
shape of the inner boundaries and the boundary conditions that must be imposed
there. We show rigorously that with these choices, the resulting non-linear
elliptic system always admits solutions.Comment: 11 pages, 2 figures, RevTeX
Recommended from our members
Anatomic brain asymmetry in vervet monkeys.
Asymmetry is a prominent feature of human brains with important functional consequences. Many asymmetric traits show population bias, but little is known about the genetic and environmental sources contributing to inter-individual variance. Anatomic asymmetry has been observed in Old World monkeys, but the evidence for the direction and extent of asymmetry is equivocal and only one study has estimated the genetic contributions to inter-individual variance. In this study we characterize a range of qualitative and quantitative asymmetry measures in structural brain MRIs acquired from an extended pedigree of Old World vervet monkeys (n = 357), and implement variance component methods to estimate the proportion of trait variance attributable to genetic and environmental sources. Four of six asymmetry measures show pedigree-level bias and one of the traits has a significant heritability estimate of about 30%. We also found that environmental variables more significantly influence the width of the right compared to the left prefrontal lobe
Gating-by-tilt of mechanosensitive membrane channels
We propose an alternative mechanism for the gating of biological membrane
channels in response to membrane tension that involves a change in the slope of
the membrane near the channel. Under biological membrane tensions we show that
the energy difference between the closed (tilted) and open (untilted) states
can far exceed kBT and is comparable to what is available under simple
ilational gating. Recent experiments demonstrate that membrane leaflet
asymmetries (spontaneous curvature) can strong effect the gating of some
channels. Such a phenomenon would be more easy to explain under gating-by-tilt,
given its novel intrinsic sensitivity to such asymmetry.Comment: 10 pages, 2 figure
The Einstein constraints: uniqueness and non-uniqueness in the conformal thin sandwich approach
We study the appearance of multiple solutions to certain decompositions of
Einstein's constraint equations. Pfeiffer and York recently reported the
existence of two branches of solutions for identical background data in the
extended conformal thin-sandwich decomposition. We show that the Hamiltonian
constraint alone, when expressed in a certain way, admits two branches of
solutions with properties very similar to those found by Pfeiffer and York. We
construct these two branches analytically for a constant-density star in
spherical symmetry, but argue that this behavior is more general. In the case
of the Hamiltonian constraint this non-uniqueness is well known to be related
to the sign of one particular term, and we argue that the extended conformal
thin-sandwich equations contain a similar term that causes the breakdown of
uniqueness.Comment: 9 pages, 1 figur
Master equation approach to DNA-breathing in heteropolymer DNA
After crossing an initial barrier to break the first base-pair (bp) in
double-stranded DNA, the disruption of further bps is characterized by free
energies between less than one to a few kT. This causes the opening of
intermittent single-stranded bubbles. Their unzipping and zipping dynamics can
be monitored by single molecule fluorescence or NMR methods. We here establish
a dynamic description of this DNA-breathing in a heteropolymer DNA in terms of
a master equation that governs the time evolution of the joint probability
distribution for the bubble size and position along the sequence. The transfer
coefficients are based on the Poland-Scheraga free energy model. We derive the
autocorrelation function for the bubble dynamics and the associated relaxation
time spectrum. In particular, we show how one can obtain the probability
densities of individual bubble lifetimes and of the waiting times between
successive bubble events from the master equation. A comparison to results of a
stochastic Gillespie simulation shows excellent agreement.Comment: 12 pages, 8 figure
Inhibition of BACH1 (FANCJ) helicase by backbone discontinuity is overcome by increased motor ATPase or length of loading strand
The BRCA1 associated C-terminal helicase (BACH1) associated with breast cancer has been implicated in double strand break (DSB) repair. More recently, BACH1 (FANCJ) has been genetically linked to the chromosomal instability disorder Fanconi Anemia (FA). Understanding the roles of BACH1 in cellular DNA metabolism and how BACH1 dysfunction leads to tumorigenesis requires a comprehensive investigation of its catalytic mechanism and molecular functions in DNA repair. In this study, we have determined that BACH1 helicase contacts with both the translocating and the non-translocating strands of the duplex are critical for its ability to track along the sugar phosphate backbone and unwind dsDNA. An increased motor ATPase of a BACH1 helicase domain variant (M299I) enabled the helicase to unwind the backbone-modified DNA substrate in a more proficient manner. Alternatively, increasing the length of the 5′ tail of the DNA substrate allowed BACH1 to overcome the backbone discontinuity, suggesting that BACH1 loading mechanism is critical for its ability to unwind damaged DNA molecules
A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths
We discuss the design and measured performance of a titanium nitride (TiN)
mesh absorber we are developing for controlling optical crosstalk in
horn-coupled lumped-element kinetic inductance detector arrays for
millimeter-wavelengths. This absorber was added to the fused silica
anti-reflection coating attached to previously-characterized, 20-element
prototype arrays of LEKIDs fabricated from thin-film aluminum on silicon
substrates. To test the TiN crosstalk absorber, we compared the measured
response and noise properties of LEKID arrays with and without the TiN mesh.
For this test, the LEKIDs were illuminated with an adjustable, incoherent
electronic millimeter-wave source. Our measurements show that the optical
crosstalk in the LEKID array with the TiN absorber is reduced by 66\% on
average, so the approach is effective and a viable candidate for future
kilo-pixel arrays.Comment: 7 pages, 5 figures, accepted for publication in the Journal of Low
Temperature Physic
- …