188 research outputs found

    Association of eNOS gene polymorphisms with renal disease in Caucasians with type 2 diabetes

    Get PDF
    AbstractAimIn this study we investigated if the −786T>C, the VNTR intron 4 a/b and the 894G>T (Glu298Asp) polymorphisms in the eNOS gene were associated with renal disease in 617 type 2 diabetic Caucasian-Brazilians. These polymorphisms were also examined in 100 Caucasian healthy blood donors.MethodsGenotyping of eNOS polymorphisms was performed by PCR or PCR-RFLP and haplotype frequencies were estimated using a Bayesian method. Logistic regression analysis was done to test for association of eNOS polymorphisms with susceptibility to renal involvement (microalbuminuria, macroalbuminuria or end-stage renal disease). This analysis was carried out assuming three diferent genetic models for the minor allele, adjusting for possible effect modifiers.ResultsGenotype and allele frequencies in patients with renal disease were not significantly different from those of patients with normoalbuminuria and healthy blood donors for all eNOS polymorphisms. Likewise, there were no differences in haplotype frequencies among healthy blood donors and type 2 diabetic patients with or without renal involvement (P>0.05 for all comparisons).ConclusionNo associations between the −786T>C, the VNTR intron 4 a/b and the 894G>T (Glu298Asp) polymorphisms in the eNOS gene and renal disease were observed in type 2 diabetic Caucasian-Brazilians

    World Allergy Organization (WAO) Diagnosis and Rationale for Action against Cow's Milk Allergy (DRACMA) Guidelines update – I – Plan and definitions

    Get PDF
    Since the World Allergy Organization (WAO) Diagnosis and Rationale against Cow's Milk Allergy (DRACMA) Guidelines were published 10 years ago, new evidence has accumulated about the diagnosis, therapy, and specific immunotherapy for cow's milk allergy (CMA). For this reason, WAO has felt the need to update the guidelines. We introduce here this update. The new DRACMA guidelines aim to comprehensively address the guidance on diagnosis and therapy of both IgE non-IgE-mediated forms of cow's milk allergy in children and adults. They will be divided into 18 chapters, each of which will be dedicated to an aspect. The focus will be on the meta-analyzes and recommendations that will be expressed for the 3 most relevant clinical aspects: (a) the diagnostic identification of the condition; (b) the choice of the replacement formula in case of CMA in infancy when the mother is not able to breastfeed, and (c) the use of specific immunotherapy for cow's milk protein allergy

    Exogenous HIV-1 Nef Upsets the IFN-γ-Induced Impairment of Human Intestinal Epithelial Integrity

    Get PDF
    The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line.We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepithelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade.Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions

    Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members

    Get PDF
    SGLT2 (for “Sodium GLucose coTransporter” protein 2) is the major protein responsible for glucose reabsorption in the kidney and its inhibition has been the focus of drug discovery efforts to treat type 2 diabetes. In order to better clarify the human tissue distribution of expression of SGLT2 and related members of this cotransporter class, we performed TaqMan™ (Applied Biosystems, Foster City, CA, USA) quantitative polymerase chain reaction (PCR) analysis of SGLT2 and other sodium/glucose transporter genes on RNAs from 72 normal tissues from three different individuals. We consistently observe that SGLT2 is highly kidney specific while SGLT5 is highly kidney abundant; SGLT1, sodium-dependent amino acid transporter (SAAT1), and SGLT4 are highly abundant in small intestine and skeletal muscle; SGLT6 is expressed in the central nervous system; and sodium myoinositol cotransporter is ubiquitously expressed across all human tissues

    Association of genetic variants in the promoter region of genes encoding p22phox (CYBA) and glutamate cysteine ligase catalytic subunit (GCLC) and renal disease in patients with type 1 diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxidative stress is recognized as a major pathogenic factor of cellular damage caused by hyperglycemia. NOX/NADPH oxidases generate reactive oxygen species and NOX1, NOX2 and NOX4 isoforms are expressed in kidney and require association with subunit p22phox (encoded by the <it>CYBA </it>gene). Increased expression of p22phox was described in animal models of diabetic nephropathy. In the opposite direction, glutathione is one of the main endogenous antioxidants whose plasmatic concentrations were reported to be reduced in diabetes patients. The aim of the present investigation was to test whether functional single nucleotide polymorphisms (SNPs) in genes involved in the generation of NADPH-dependent O<sub>2</sub><sup>•- </sup>(-675 T → A in <it>CYBA</it>, unregistered) and in glutathione metabolism (-129 C → T in <it>GCLC </it>[rs17883901] and -65 T → C in <it>GPX3 </it>[rs8177412]) confer susceptibility to renal disease in type 1 diabetes patients.</p> <p>Methods</p> <p>401 patients were sorted into two groups according to the presence (n = 104) or absence (n = 196) of overt diabetic nephropathy or according to glomerular filtration rate (GFR) estimated by Modification of Diet in Renal Disease (MDRD) equation: ≥ 60 mL (n = 265) or < 60 mL/min/1.73 m<sup>2 </sup>(n = 136) and were genotyped.</p> <p>Results</p> <p>No differences were found in the frequency of genotypes between diabetic and non-diabetic subjects. The frequency of GFR < 60 mL/min was significantly lower in the group of patients carrying <it>CYBA </it>genotypes T/A+A/A (18.7%) than in the group carrying the T/T genotype (35.3%) (P = 0.0143) and the frequency of GFR < 60 mL/min was significantly higher in the group of patients carrying <it>GCLC </it>genotypes C/T+T/T (47.1%) than in the group carrying the C/C genotype (31.1%) (<it>p </it>= 0.0082). Logistic regression analysis identified the presence of at least one A allele of the <it>CYBA </it>SNP as an independent protection factor against decreased GFR (OR = 0.38, CI95% 0.14-0.88, <it>p </it>= 0.0354) and the presence of at least one T allele of the <it>GCLC </it>rs17883901 SNP as an independent risk factor for decreased GFR (OR = 2.40, CI95% 1.27-4.56, <it>p </it>= 0.0068).</p> <p>Conclusions</p> <p>The functional SNPs <it>CYBA </it>-675 T → A and <it>GCLC </it>rs17883901, probably associated with cellular redox imbalances, modulate the risk for renal disease in the studied population of type 1 diabetes patients and require validation in additional cohorts.</p
    corecore