135 research outputs found

    Sex-specific transcriptomic responses to changes in the nutritional environment

    Get PDF
    Males and females typically pursue divergent reproductive strategies and accordingly require different dietary compositions to maximise their fitness. Here we move from identifying sex-specific optimal diets to understanding the molecular mechanisms that underlie male and female responses to dietary variation in Drosophila melanogaster. We examine male and female gene expression on male-optimal (carbohydrate-rich) and female-optimal (protein-rich) diets. We find that the sexes share a large core of metabolic genes that are concordantly regulated in response to dietary composition. However, we also observe smaller sets of genes with divergent and opposing regulation, most notably in reproductive genes which are over-expressed on each sex's optimal diet. Our results suggest that nutrient sensing output emanating from a shared metabolic machinery are reversed in males and females, leading to opposing diet-dependent regulation of reproduction in males and females. Further analysis and experiments suggest that this reverse regulation occurs within the IIS/TOR network

    Clathrin light chain diversity regulates membrane deformation in vitro and synaptic vesicle formation in vivo

    Get PDF
    Clathrin light chain (CLC) subunits in vertebrates are encoded by paralogous genes CLTA and CLTB, and both gene products are alternatively spliced in neurons. To understand how this CLC diversity influences neuronal clathrin function, we characterized the biophysical properties of clathrin comprising individual CLC variants for correlation with neuronal phenotypes of mice lacking either CLC-encoding gene. CLC splice variants differentially influenced clathrin knee conformation within assemblies, and clathrin with neuronal CLC mixtures was more effective in membrane deformation than clathrin with single neuronal isoforms nCLCa or nCLCb. Correspondingly, electrophysiological recordings revealed that neurons from mice lacking nCLCa or nCLCb were both defective in synaptic vesicle replenishment. Mice with only nCLCb had a reduced synaptic vesicle pool and impaired neurotransmission compared to WT mice, while nCLCa-only mice had increased synaptic vesicle numbers, restoring normal neurotransmission. These findings highlight differences between the CLC isoforms and show that isoform mixing influences tissue-specific clathrin activity in neurons, which requires their functional balance

    CHC22 and CHC17 clathrins have distinct biochemical properties and display differential regulation and function

    Get PDF
    Clathrins are cytoplasmic proteins that play essential roles in endocytosis and other membrane traffic pathways. Upon recruitment to intracellular membranes, the canonical clathrin triskelion assembles into a polyhedral protein coat that facilitates vesicle formation and captures cargo molecules for transport. The triskelion is formed by trimerization of three clathrin heavy-chain subunits. Most vertebrates have two isoforms of clathrin heavy chains, CHC17 and CHC22, generating two clathrins with distinct cellular functions. CHC17 forms vesicles at the plasma membrane for receptor-mediated endocytosis and at the trans-Golgi network for organelle biogenesis. CHC22 plays a key role in intracellular targeting of the insulin-regulated glucose transporter 4 (GLUT4), accumulates at the site of GLUT4 sequestration during insulin resistance, and has also been implicated in neuronal development. Here, we demonstrate that CHC22 and CHC17 share morphological features, in that CHC22 forms a triskelion and latticed vesicle coats. However, cellular CHC22-coated vesicles were distinct from those formed by CHC17. The CHC22 coat was more stable to pH change and was not removed by the enzyme complex that disassembles the CHC17 coat. Moreover, the two clathrins were differentially recruited to membranes by adaptors, and CHC22 did not support vesicle formation or transferrin endocytosis at the plasma membrane in the presence or absence of CHC17. Our findings provide biochemical evidence for separate regulation and distinct functional niches for CHC17 and CHC22 in human cells. Furthermore, the greater stability of the CHC22 coat relative to the CHC17 coat may be relevant to its excessive accumulation with GLUT4 during insulin resistance

    The effect of bovine colostrum supplementation on intestinal injury and circulating intestinal bacterial DNA following exercise in the heat

    Get PDF
    Purpose Exercise-induced changes in intestinal permeability are exacerbated in the heat. The aim of this study was to determine the effect of 14 days of bovine colostrum (Col) supplementation on intestinal cell damage (plasma intestinal fatty acid-binding protein, I-FABP) and bacterial translocation (plasma bacterial DNA) following exercise in the heat. Methods In a double-blind, placebo-controlled, crossover design, 12 males completed two experimental arms (14 days of 20 g/day supplementation with Col or placebo, Plac) consisting of 60 min treadmill running at 70% maximal aerobic capacity (30 ??C, 60% relative humidity). Blood samples were collected pre-exercise (Pre-Ex), post-exercise (Post-Ex) and 1 h post-exercise (1 h Post-Ex) to determine plasma I-FABP concentration, and bacterial DNA (for an abundant gut species, Bacteroides). Results Two-way repeated measures ANOVA revealed an arm ?~ time interaction for I-FABP (P = 0.005, with greater Post- Ex increase in Plac than Col, P = 0.01: Plac 407 ?} 194% of Pre-Ex vs Col, 311 ?} 134%) and 1 h Post-Ex (P = 0.036: Plac 265 ?} 80% of Pre-Ex vs Col, 229 ?} 56%). There was no interaction (P = 0.904) but there was a main effect of arm (P = 0.046) for plasma Bacteroides/total bacterial DNA, with lower overall levels evident in Col. Conclusion This is the first investigation to demonstrate that Col can be effective at reducing intestinal injury following exercise in the heat, but exercise responses (temporal pattern) of bacterial DNA were not influenced by Col (although overall levels may be lower).publishersversionPeer reviewe

    Cerebral malaria: insights from host-parasite protein-protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral malaria is a form of human malaria wherein <it>Plasmodium falciparum</it>-infected red blood cells adhere to the blood capillaries in the brain, potentially leading to coma and death. Interactions between parasite and host proteins are important in understanding the pathogenesis of this deadly form of malaria. It is, therefore, necessary to study available protein-protein interactions to identify lesser known interactions that could throw light on key events of cerebral malaria.</p> <p>Methods</p> <p>Sequestration, haemostasis dysfunction, systemic inflammation and neuronal damage are key processes of cerebral malaria. Key events were identified from literature as being crucial to these processes. An integrated interactome was created using available experimental and predicted datasets as well as from literature. Interactions from this interactome were filtered based on Gene Ontology and tissue-specific annotations, and further analysed for relevance to the key events.</p> <p>Results</p> <p>PfEMP1 presentation, platelet activation and astrocyte dysfunction were identified as the key events influencing the disease. 48896 host-parasite along with other host-parasite, host-host and parasite-parasite protein-protein interactions obtained from a disease-specific corpus were combined to form an integrated interactome. Filtering of the interactome resulted in five host-parasite PPI, six parasite-parasite and two host-host PPI. The analysis of these interactions revealed the potential significance of apolipoproteins and temperature/Hsp expression on efficient PfEMP1 presentation; role of MSP-1 in platelet activation; effect of parasite proteins in TGF-β regulation and the role of albumin in astrocyte dysfunction.</p> <p>Conclusions</p> <p>This work links key host-parasite, parasite-parasite and host-host protein-protein interactions to key processes of cerebral malaria and generates hypotheses for disease pathogenesis based on a filtered interaction dataset. These hypotheses provide novel and significant insights to cerebral malaria.</p

    Tracking the spatial footprints of extreme storm surges around the coastline of the UK and Ireland

    Get PDF
    Storm surges are the most important driver of flooding in many coastal areas. Understanding the spatial extent of storm surge events has important financial and practical implications for flood risk management, reinsurance, infrastructure reliability and emergency response. In this paper, we apply a new tracking algorithm to a high-resolution surge hindcast (CODEC, 1980–2017) to characterize the spatial dependence and temporal evolution of extreme surge events along the coastline of the UK and Ireland. We quantify the severity of each spatial event based on its footprint extremity to select and rank the collection of events. Several surge footprint types are obtained based on the most impacted coastal stretch from each particular event, and these are linked to the driving storm tracks. Using the collection of the extreme surge events, we assess the spatial distribution and interannual variability of the duration, size, severity, and type. We find that the northeast coastline is most impacted by the longest and largest storm surge events, while the English Channel experiences the shortest and smallest storm surge events. The interannual variability indicates that the winter seasons of 1989-90 and 2013–14 were the most serious in terms of the number of events and their severity, based on the return period along the affected coastlines. The most extreme surge event and the highest number of events occurred in the winter season 1989–90, while the proportion of events with larger severities was higher during the winter season 2013–14. This new spatial analysis approach of surge extremes allows us to distinguish several categories of spatial footprints of events around the UK/Ireland coast and link these to distinct storm tracks. The spatial dependence structures detected can improve multivariate statistical methods which are crucial inputs to coastal flooding assessments

    Candidaemia and antifungal therapy in a French University Hospital: rough trends over a decade and possible links

    Get PDF
    BACKGROUND: Evidence for an increased prevalence of candidaemia and for high associated mortality in the 1990s led to a number of different recommendations concerning the management of at risk patients as well as an increase in the availability and prescription of new antifungal agents. The aim of this study was to parallel in our hospital candidemia incidence with the nature of prescribed antifungal drugs between 1993 and 2003. METHODS: During this 10-year period we reviewed all cases of candidemia, and collected all the data about annual consumption of prescribed antifungal drugs RESULTS: Our centralised clinical mycology laboratory isolates and identifies all yeasts grown from blood cultures obtained from a 3300 bed teaching hospital. Between 1993 and 2003, 430 blood yeast isolates were identified. Examination of the trends in isolation revealed a clear decrease in number of yeast isolates recovered between 1995–2000, whereas the number of positive blood cultures in 2003 rose to 1993 levels. The relative prevalence of Candida albicans and C. glabrata was similar in 1993 and 2003 in contrast to the period 1995–2000 where an increased prevalence of C. glabrata was observed. When these quantitative and qualitative data were compared to the amount and type of antifungal agents prescribed during the same period (annual mean defined daily dose: 2662741; annual mean cost: 615629 €) a single correlation was found between the decrease in number of yeast isolates, the increased prevalence of C. glabrata and the high level of prescription of fluconazole at prophylactic doses between 1995–2000. CONCLUSION: Between 1993 and 2000, the number of cases of candidemia halved, with an increase of C. glabrata prevalence. These findings were probably linked to the use of Fluconazole prophylaxis. Although it is not possible to make any recommendations from this data the information is nevertheless interesting and may have considerable implications with the introduction of new antifungal drugs

    SNAP-tagged Chikungunya Virus Replicons Improve Visualisation of Non-Structural Protein 3 by Fluorescence Microscopy

    Get PDF
    Chikungunya virus (CHIKV), a mosquito-borne alphavirus, causes febrile disease, muscle and joint pain, which can become chronic in some individuals. The non-structural protein 3 (nsP3) plays essential roles during infection, but a complete understanding of its function is lacking. Here we used a microscopy-based approach to image CHIKV nsP3 inside human cells. The SNAP system consists of a self-labelling enzyme tag, which catalyses the covalent linking of exogenously supplemented synthetic ligands. Genetic insertion of this tag resulted in viable replicons and specific labelling while preserving the effect of nsP3 on stress granule responses and co-localisation with GTPase Activating Protein (SH3 domain) Binding Proteins (G3BPs). With sub-diffraction, three-dimensional, optical imaging, we visualised nsP3-positive structures with variable density and morphology, including high-density rod-like structures, large spherical granules, and small, low-density structures. Next, we confirmed the utility of the SNAP tag for studying protein turnover by pulse-chase labelling. We also revealed an association of nsP3 with cellular lipid droplets and examined the spatial relationships between nsP3 and the non-structural protein 1 (nsP1). Together, our study provides a sensitive, specific, and versatile system for fundamental research into the individual functions of a viral non-structural protein during infection with a medically important arthropod-borne virus (arbovirus)

    Robustness and uncertainties in global multivariate wind-wave climate projections

    Get PDF
    Understanding climate-driven impacts on the multivariate global wind-wave climate is paramount to effective offshore/coastal climate adaptation planning. However, the use of single-method ensembles and variations arising from different methodologies has resulted in unquantified uncertainty amongst existing global wave climate projections. Here, assessing the first coherent, community-driven, multi-method ensemble of global wave climate projections, we demonstrate widespread ocean regions with robust changes in annual mean significant wave height and mean wave period of 5–15% and shifts in mean wave direction of 5–15°, under a high-emission scenario. Approximately 50% of the world’s coastline is at risk from wave climate change, with ~40% revealing robust changes in at least two variables. Furthermore, we find that uncertainty in current projections is dominated by climate model-driven uncertainty, and that single-method modelling studies are unable to capture up to ~50% of the total associated uncertainty
    • …
    corecore