552 research outputs found

    Screening for hotspot mutations in PI3K, JAK2, FLT3 and NPM1 in patients with myelodysplastic syndromes

    Get PDF
    INTRODUCTION: Myelodysplastic syndromes encompass a heterogeneous group of clonal hematopoietic stem cell disorders characterized by ineffective hematopoiesis, refractory cytopenia and a tendency to progress toward acute myeloid leukemia. The accumulation of genetic alterations is closely associated with the progression of myelodysplastic syndromes toward acute myeloid leukemia. OBJECTIVE: To investigate the presence of mutations in the points most frequent for mutations (hotspot mutations) in phosphatidylinositol-3-kinase (PI3K), Janus kinase 2 (JAK2), FMS-like tyrosine kinase 3 (FLT3) and nucleophosmin (NPM1), which are involved in leukemia and other cancers, in a population of Brazilian MDS patients. METHODS: Fifty-one myelodysplastic syndromes patients were included in the study. According to French-American-British classification, the patients were distributed as follows: 31 with refractory anemia, 8 with refractory anemia with ringed sideroblasts, 7 with refractory anemia with excess blasts, 3 with refractory anemia with excess blasts in transformation and 2 with chronic myelomonocytic leukemia. Bone marrow samples were obtained and screened for the presence of hotspot mutations using analysis based on amplification with the polymerase chain reaction, sequencing, fragment size polymorphisms or restriction enzyme digestion. All patients were screened for mutations at the time of diagnosis, and 5 patients were also screened at the time of disease progression. RESULTS: In the genes studied, no mutations were detected in the patients at the time of diagnosis. One patient with chronic myelomonocytic leukemia was heterozygous for a Janus kinase 2 mutation after disease progression. CONCLUSIONS: These results show that hotspot mutations in the PI3K, JAK2, FLT3 and NPM1 genes are not common in MDS patients; nevertheless, JAK2 mutations may be present in myelodysplasia during disease progression

    Assessing the ability of substrate mapping techniques to guide ventricular tachycardia ablation using computational modelling

    Get PDF
    BACKGROUND: Identification of targets for ablation of post-infarction ventricular tachycardias (VTs) remains challenging, often requiring arrhythmia induction to delineate the reentrant circuit. This carries a risk for the patient and may not be feasible. Substrate mapping has emerged as a safer strategy to uncover arrhythmogenic regions. However, VT recurrence remains common. GOAL: To use computer simulations to assess the ability of different substrate mapping approaches to identify VT exit sites. METHODS: A 3D computational model of the porcine post-infarction heart was constructed to simulate VT and paced rhythm. Electroanatomical maps were constructed based on endocardial electrogram features and the reentry vulnerability index (RVI - a metric combining activation (AT) and repolarization timings to identify tissue susceptibility to reentry). Since scar transmurality in our model was not homogeneous, parameters derived from all signals (including dense scar regions) were used in the analysis. Potential ablation targets obtained from each electroanatomical map during pacing were compared to the exit site detected during VT mapping. RESULTS: Simulation data showed that voltage cut-offs applied to bipolar electrograms could delineate the scar, but not the VT circuit. Electrogram fractionation had the highest correlation with scar transmurality. The RVI identified regions closest to VT exit site but was outperformed by AT gradients combined with voltage cut-offs. The performance of all metrics was affected by pacing location. CONCLUSIONS: Substrate mapping could provide information about the infarct, but the directional dependency on activation should be considered. Activation-repolarization metrics have utility in safely identifying VT targets, even with non-transmural scars

    Sequential Electro-Anatomical Mapping Methodology and Preliminary Results for Reentry Vulnerability Index Estimation

    Get PDF
    Ventricular tachycardia (VT) recurrence after catheter ablation remains frequent and improved ablation strategies are needed. The re-entry vulnerability index (RVI) is an activation-repolarization marker to localize critical sites for VT initiation. Its use is limited since current electro-anatomical mapping systems (EAMS) cannot provide global measurement of activation and repolarization times within a single beat. We carried out a simulation study to assess a simple method to measure RVI using data collected by sequential EAMS and we investigated the effect of background noise, RT variability (σRT ) and ectopics on RVI estimation. The mean correlation coefficient between single ECG beats and a representative template is used as inclusion/exclusion criterion. Localization of the vulnerable region associated with 5% bottom RVI was accurate (sensitivity80±8%, specificity> 99±1%) for moderate to large repolarization variability (5 ≤ σRT ≤ 20 ms) and moderate level of noise (SNR ≥ 10 dB) but it deteriorated for σRT ≥ 25 ms and SNR ≤ 5 dB. Sensitivity remained high even when RVI estimates were only moderately accurate (cc > 0.67 ± 0.05, MAE < 25 ± 1 ms). The number of ectopic beats did not affect the results. In the in-vivo case analyzed, the sites of low RVI and VT exit was close (5.1 mm

    Evaluation of the Re-entry Vulnerability Index to Predict Ventricular Tachycardia Circuits Using High Density Contact Mapping

    Get PDF
    BACKGROUND: Identifying arrhythmogenic sites to improve ventricular tachycardia (VT) ablation outcomes remains unresolved. The re-entry vulnerability index (RVI) combines activation and repolarization timings to identify sites critical for re-entrant arrhythmia initiation without inducing VT. OBJECTIVE: To provide the first assessment of RVI's capability to identify VT sites of origin using high-density contact mapping and comparison with other activation-repolarization markers of functional substrate. METHODS: 18 VT ablation patients (16M, 72% ischemic) were studied. Unipolar electrograms were recorded during ventricular pacing and analysed off-line. Activation time (AT), activation-recovery interval (ARI), repolarization time (RT) were measured. Vulnerability to re-entry was mapped based on RVI and spatial distribution of AT, ARI and RT. The distance from sites identified as vulnerable to re-entry to the VT site of origin was measured, with distances 20 mm indicating accurate and inaccurate localization, respectively. RESULTS: The origin of 18 VTs was identified (n=6 entrainment, n=12 pace-mapping). RVI maps included 1012, 408-2098 (median, 1st-3rd quartiles) points/patient. RVI accurately localized 72.2% VT sites of origin, with median distance equal to 5.1, 3.2-10.1 mm. Inaccurate localization was significantly less frequent for RVI than AT (5.6% vs 33.3%, OR=0.12, P=0.035). Compared to RVI, distance to VT sites of origin was significantly larger for sites showing prolonged RT and ARI, and non-significantly larger for sites showing highest AT and ARI gradients. CONCLUSION: RVI identifies vulnerable regions closest to VT sites of origin. Activation-repolarization metrics may improve VT substrate delineation and inform novel ablation strategies

    Sex-specific differences in the synaptonemal complex in the genus Oreochromis (Cichlidae)

    Get PDF
    Total synaptonemal complex (SC) lengths were estimated from Oreochromis aureus Steindachner (which has a WZ/ZZ sex determination system), O. mossambicus Peters and O. niloticus L. (both of which have XX/XY sex determination systems). The total SC length in oocytes was greater than that in spermatocytes in all three species (194±30 μm and 134±13 μm, 187±22 μm and 127±17 μm, 193±37 μm and 144±19 μm, respectively). These sex-specific differences did not appear to be influenced by the type of sex determination system (the female/male total SC length ratio was 1.45 in O. aureus, 1.47 in O. mossambicus and 1.34 in O. niloticus) and do not correlate with the lack of any overall sex-specific length differences in the current Oreochromis linkage map. Although based on data from relatively few species, there appears to be no consistent relationship between sex-specific SC lengths and linkage map lengths in fish. Neomale (hormonally masculinized genetic female) O. aureus and O. mossambicus had total SC lengths of 138±13 μm and 146±13 μm respectively, more similar to normal males than to normal females. These findings agree with data from other vertebrate species that suggest that phenotypic sex, rather than genotype, determines traits such as total SC length, chiasmata position and recombination pattern, at least for the autosomes

    Nautilus at Risk – Estimating Population Size and Demography of Nautilus pompilius

    Get PDF
    The low fecundity, late maturity, long gestation and long life span of Nautilus suggest that this species is vulnerable to over-exploitation. Demand from the ornamental shell trade has contributed to their rapid decline in localized populations. More data from wild populations are needed to design management plans which ensure Nautilus persistence. We used a variety of techniques including capture-mark-recapture, baited remote underwater video systems, ultrasonic telemetry and remotely operated vehicles to estimate population size, growth rates, distribution and demographic characteristics of an unexploited Nautilus pompilius population at Osprey Reef (Coral Sea, Australia). We estimated a small and dispersed population of between 844 and 4467 individuals (14.6–77.4 km−2) dominated by males (83∶17 male∶female) and comprised of few juveniles (<10%).These results provide the first Nautilid population and density estimates which are essential elements for long-term management of populations via sustainable catch models. Results from baited remote underwater video systems provide confidence for their more widespread use to assess efficiently the size and density of exploited and unexploited Nautilus populations worldwide

    Unravelling the effects of age, period and cohort on metabolic syndrome components in a Taiwanese population using partial least squares regression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We investigate whether the changing environment caused by rapid economic growth yielded differential effects for successive Taiwanese generations on 8 components of metabolic syndrome (MetS): body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), triglycerides (TG), high-density lipoprotein (HDL), Low-density lipoproteins (LDL) and uric acid (UA).</p> <p>Methods</p> <p>To assess the impact of age, birth year and year of examination on MetS components, we used partial least squares regression to analyze data collected by Mei-Jaw clinics in Taiwan in years 1996 and 2006. Confounders, such as the number of years in formal education, alcohol intake, smoking history status, and betel-nut chewing were adjusted for.</p> <p>Results</p> <p>As the age of individuals increased, the values of components generally increased except for UA. Men born after 1970 had lower FPG, lower BMI, lower DBP, lower TG, Lower LDL and greater HDL; women born after 1970 had lower BMI, lower DBP, lower TG, Lower LDL and greater HDL and UA. There is a similar pattern between the trend in levels of metabolic syndrome components against birth year of birth and economic growth in Taiwan.</p> <p>Conclusions</p> <p>We found cohort effects in some MetS components, suggesting associations between the changing environment and health outcomes in later life. This ecological association is worthy of further investigation.</p

    S-allylmercaptocysteine scavenges hydroxyl radical and singlet oxygen in vitro and attenuates gentamicin-induced oxidative and nitrosative stress and renal damage in vivo

    Get PDF
    BACKGROUND: Oxidative and nitrosative stress have been involved in gentamicin-induced nephrotoxicity. The purpose of this work was to study the effect of S-allylmercaptocysteine, a garlic derived compound, on gentamicin-induced oxidative and nitrosative stress and nephrotoxicity. In addition, the in vitro reactive oxygen species scavenging properties of S-allylmercaptocysteine were studied. RESULTS: S-allylmercaptocysteine was able to scavenge hydroxyl radicals and singlet oxygen in vitro. In rats treated with gentamicin (70 mg/Kg body weight, subcutaneously, every 12 h, for 4 days), renal oxidative stress was made evident by the increase in protein carbonyl content and 4-hydroxy-2-nonenal, and the nitrosative stress was made evident by the increase in 3-nitrotyrosine. In addition, gentamicin-induced nephrotoxicity was evident by the: (1) decrease in creatinine clearance and in activity of circulating glutathione peroxidase, and (2) increase in urinary excretion of N-acetyl-β-D-glucosaminidase, and (3) necrosis of proximal tubular cells. Gentamicin-induced oxidative and nitrosative stress and nephrotoxicity were attenuated by S-allylmercaptocysteine treatment (100 mg/Kg body weight, intragastrically, 24 h before the first dose of gentamicin and 50 mg/Kg body weight, intragastrically, every 12 h, for 4 days along gentamicin-treatment). CONCLUSION: In conclusion, S-allylmercaptocysteine is able to scavenge hydroxyl radicals and singlet oxygen in vitro and to ameliorate the gentamicin-induced nephrotoxicity and oxidative and nitrosative stress in vivo
    corecore