36 research outputs found

    Genetic Relationship between Schizophrenia and Nicotine Dependence

    Get PDF
    It is well known that most schizophrenia patients smoke cigarettes. There are different hypotheses postulating the underlying mechanisms of this comorbidity. We used summary statistics from large meta-analyses of plasma cotinine concentration (COT), Fagerström test for nicotine dependence (FTND) and schizophrenia to examine the genetic relationship between these traits. We found that schizophrenia risk scores calculated at P-value thresholds of 5 × 10−3 and larger predicted FTND and cigarettes smoked per day (CPD), suggesting that genes most significantly associated with schizophrenia were not associated with FTND/CPD, consistent with the self-medication hypothesis. The COT risk scores predicted schizophrenia diagnosis at P-values of 5 × 10−3 and smaller, implying that genes most significantly associated with COT were associated with schizophrenia. These results implicated that schizophrenia and FTND/CPD/COT shared some genetic liability. Based on this shared liability, we identified multiple long non-coding RNAs and RNA binding protein genes (DA376252, BX089737, LOC101927273, LINC01029, LOC101928622, HY157071, DA902558, RBFOX1 and TINCR), protein modification genes (MANBA, UBE2D3, and RANGAP1) and energy production genes (XYLB, MTRF1 and ENOX1) that were associated with both conditions. Further analyses revealed that these shared genes were enriched in calcium signaling, long-term potentiation and neuroactive ligand-receptor interaction pathways that played a critical role in cognitive functions and neuronal plasticity.</p

    Genetic Relationship between Schizophrenia and Nicotine Dependence

    Get PDF
    It is well known that most schizophrenia patients smoke cigarettes. There are different hypotheses postulating the underlying mechanisms of this comorbidity. We used summary statistics from large meta-analyses of plasma cotinine concentration (COT), Fagerstrom test for nicotine dependence (FTND) and schizophrenia to examine the genetic relationship between these traits. We found that schizophrenia risk scores calculated at P-value thresholds of 5 x 10(-3) and larger predicted FTND and cigarettes smoked per day (CPD), suggesting that genes most significantly associated with schizophrenia were not associated with FTND/CPD, consistent with the self-medication hypothesis. The COT risk scores predicted schizophrenia diagnosis at P-values of 5 x 10(-3) and smaller, implying that genes most significantly associated with COT were associated with schizophrenia. These results implicated that schizophrenia and FTND/CPD/COT shared some genetic liability. Based on this shared liability, we identified multiple long non-coding RNAs and RNA binding protein genes (DA376252, BX089737, LOC101927273, LINC01029, LOC101928622, HY157071, DA902558, RBFOX1 and TINCR), protein modification genes (MANBA, UBE2D3, and RANGAP1) and energy production genes (XYLB, MTRF1 and ENOX1) that were associated with both conditions. Further analyses revealed that these shared genes were enriched in calcium signaling, long-term potentiation and neuroactive ligand-receptor interaction pathways that played a critical role in cognitive functions and neuronal plasticity.Peer reviewe

    Genome-Wide Meta-Analysis of Cotinine Levels in Cigarette Smokers Identifies Locus at 4q13.2

    Get PDF
    Genome-wide association studies (GWAS) of complex behavioural phenotypes such as cigarette smoking typically employ self-report phenotypes. However, precise biomarker phenotypes may afford greater statistical power and identify novel variants. Here we report the results of a GWAS meta-analysis of levels of cotinine, the primary metabolite of nicotine, in 4,548 daily smokers of European ancestry. We identified a locus close to UGT2B10 at 4q13.2 (minimum p = 5.89 x 10(-10) for rs114612145), which was consequently replicated. This variant is in high linkage disequilibrium with a known functional variant in the UGT2B10 gene which is associated with reduced nicotine and cotinine glucuronidation activity, but intriguingly is not associated with nicotine intake. Additionally, we observed association between multiple variants within the 15q25.1 region and cotinine levels, all located within the CHRNA5-A3-B4 gene cluster or adjacent genes, consistent with previous much larger GWAS using self-report measures of smoking quantity. These results clearly illustrate the increase in power afforded by using precise biomarker measures in GWAS. Perhaps more importantly however, they also highlight that biomarkers do not always mark the phenotype of interest. The use of metabolite data as a proxy for environmental exposures should be carefully considered in the context of individual differences in metabolic pathways.Peer reviewe

    Sex Differences in Genetic Architecture of Complex Phenotypes?

    Get PDF
    We examined sex differences in familial resemblance for a broad range of behavioral, psychiatric and health related phenotypes (122 complex traits) in children and adults. There is a renewed interest in the importance of genotype by sex interaction in, for example, genome-wide association (GWA) studies of complex phenotypes. If different genes play a role across sex, GWA studies should consider the effect of genetic variants separately in men and women, which affects statistical power. Twin and family studies offer an opportunity to compare resemblance between opposite-sex family members to the resemblance between same-sex relatives, thereby presenting a test of quantitative and qualitative sex differences in the genetic architecture of complex traits. We analyzed data on lifestyle, personality, psychiatric disorder, health, growth, development and metabolic traits in dizygotic (DZ) same-sex and opposite-sex twins, as these siblings are perfectly matched for age and prenatal exposures. Sample size varied from slightly over 300 subjects for measures of brain function such as EEG power to over 30,000 subjects for childhood psychopathology and birth weight. For most phenotypes, sample sizes were large, with an average sample size of 9027 individuals. By testing whether the resemblance in DZ opposite-sex pairs is the same as in DZ same-sex pairs, we obtain evidence for genetic qualitative sex-differences in the genetic architecture of complex traits for 4% of phenotypes. We conclude that for most traits that were examined, the current evidence is that same the genes are operating in men and women

    Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses

    Get PDF
    Very few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associated with subjective well-being, 2 variants associated with depressive symptoms, and 11 variants associated with neuroticism, including 2 inversion polymorphisms. The two loci associated with depressive symptoms replicate in an independent depression sample. Joint analyses that exploit the high genetic correlations between the phenotypes (|ρ^| ≈ 0.8) strengthen the overall credibility of the findings and allow us to identify additional variants. Across our phenotypes, loci regulating expression in central nervous system and adrenal or pancreas tissues are strongly enriched for association.</p

    Investigating the possible causal association of smoking with depression and anxiety using Mendelian randomisation meta-analysis : the CARTA consortium

    Get PDF
    Peer reviewe

    Genetic association in multivariate phenotypic data: Power in five models

    No full text
    This article concerns the power of various data analytic strategies to detect the effect of a single genetic variant (GV) in multivariate data. We simulated exactly fitting monozygotic and dizygotic phenotypic data according to single and two common factor models, and simplex models. We calculated the power to detect the GV in twin 1 data in an ANOVA of phenotypic sum scores, in a MANOVA, and in exploratory factor analysis (EFA), in which the common factors are regressed on the genetic variant. We also report power in the full twin model, and power of the single phenotype ANOVA. The results indicate that (1) if the GV affects all phenotypes, the sum score ANOVA and the EFA are most powerful, while the MANOVA is less powerful. Increasing phenotypic correlations further decreases the power of the MANOVA; and (2) if the GV affects only a subset of the phenotypes, the EFA or the MANOVA are most powerful, while sum score ANOVA is less powerful. In this case, an increase in phenotypic correlations may enhance the power of MANOVA and EFA. If the effect of the GV is modeled directly on the phenotypes in the EFA, the power of the EFA is approximately equal to the power of the MANOVA
    corecore