8 research outputs found

    Latitude dictates plant diversity effects on instream decomposition

    Get PDF
    Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113 degrees of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes

    Latitude dictates plant diversity effects on instream decomposition

    No full text
    Abstract Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes

    Researching COVID to enhance recovery (RECOVER) pediatric study protocol: Rationale, objectives and design.

    No full text
    ImportanceThe prevalence, pathophysiology, and long-term outcomes of COVID-19 (post-acute sequelae of SARS-CoV-2 [PASC] or "Long COVID") in children and young adults remain unknown. Studies must address the urgent need to define PASC, its mechanisms, and potential treatment targets in children and young adults.ObservationsWe describe the protocol for the Pediatric Observational Cohort Study of the NIH's REsearching COVID to Enhance Recovery (RECOVER) Initiative. RECOVER-Pediatrics is an observational meta-cohort study of caregiver-child pairs (birth through 17 years) and young adults (18 through 25 years), recruited from more than 100 sites across the US. This report focuses on two of four cohorts that comprise RECOVER-Pediatrics: 1) a de novo RECOVER prospective cohort of children and young adults with and without previous or current infection; and 2) an extant cohort derived from the Adolescent Brain Cognitive Development (ABCD) study (n = 10,000). The de novo cohort incorporates three tiers of data collection: 1) remote baseline assessments (Tier 1, n = 6000); 2) longitudinal follow-up for up to 4 years (Tier 2, n = 6000); and 3) a subset of participants, primarily the most severely affected by PASC, who will undergo deep phenotyping to explore PASC pathophysiology (Tier 3, n = 600). Youth enrolled in the ABCD study participate in Tier 1. The pediatric protocol was developed as a collaborative partnership of investigators, patients, researchers, clinicians, community partners, and federal partners, intentionally promoting inclusivity and diversity. The protocol is adaptive to facilitate responses to emerging science.Conclusions and relevanceRECOVER-Pediatrics seeks to characterize the clinical course, underlying mechanisms, and long-term effects of PASC from birth through 25 years old. RECOVER-Pediatrics is designed to elucidate the epidemiology, four-year clinical course, and sociodemographic correlates of pediatric PASC. The data and biosamples will allow examination of mechanistic hypotheses and biomarkers, thus providing insights into potential therapeutic interventions.Clinical trials.gov identifierClinical Trial Registration: http://www.clinicaltrials.gov. Unique identifier: NCT05172011

    Researching COVID to enhance recovery (RECOVER) pediatric study protocol: Rationale, objectives and design

    No full text

    Perspectives on ENCODE

    No full text
    The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the long-term goal of developing a comprehensive map of functional elements in the human genome. These included genes, biochemical regions associated with gene regulation (for example, transcription factor binding sites, open chromatin, and histone marks) and transcript isoforms. The marks serve as sites for candidate cis-regulatory elements (cCREs) that may serve functional roles in regulating gene expression1. The project has been extended to model organisms, particularly the mouse. In the third phase of ENCODE, nearly a million and more than 300,000 cCRE annotations have been generated for human and mouse, respectively, and these have provided a valuable resource for the scientific community.11Nsciescopu

    Expanded encyclopaedias of DNA elements in the human and mouse genomes

    No full text
    AbstractThe human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development. All data are available through the ENCODE data portal (https://www.encodeproject.org), including phase II ENCODE1 and Roadmap Epigenomics2 data. We have developed a registry of 926,535 human and 339,815 mouse candidate cis-regulatory elements, covering 7.9 and 3.4% of their respective genomes, by integrating selected datatypes associated with gene regulation, and constructed a web-based server (SCREEN; http://screen.encodeproject.org) to provide flexible, user-defined access to this resource. Collectively, the ENCODE data and registry provide an expansive resource for the scientific community to build a better understanding of the organization and function of the human and mouse genomes.11Nsciescopu
    corecore