39 research outputs found

    Glutamatergic Reinnervation and Assembly of Glutamatergic Synapses in Adult Rat Skeletal Muscle Occurs at Cholinergic Endplates

    Get PDF
    After denervation of adult rat abdominal muscles, the postsynaptic apparatus of neuromuscular junctions (NMJs) retains its original architecture and clustering of acetylcholine receptors (AChRs). When descending fibers of the spinal cord are surgically diverted to this muscle by a nerve grafting procedure, supraspinal glutamatergic neurons can innervate muscle fibers and restore motor function; the newly formed NMJs switch from a cholinergic to a glutamatergic-type synapse. We show here that regenerating nerve endings contact the fibers in an area occupied by cholinergic endplates. These NMJs are morphologically indistinguishable from those in controls, but they differ in the subunit composition of AChRs. Moreover, by immunofluorescence and immunoelectron microscopy, new NMJs express glutamatergic synapse markers. The \u3b1-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1 partially colocalizes with AChRs, and vesicular glutamate transporter 2 is localized in the presynaptic compartment. Immunoprecipitation analysis of membranes from reinnervated muscle showed that AMPA receptor subunits GluR1 and GluR2 coimmunoprecipitate with rapsyn, the AChR-anchoring protein at the NMJ. Taken together, these results indicate that cholinergic endplates can be targeted by new glutamatergic projections and that the clustering of AMPA receptors occurs there

    Trends in chronic hepatitis B virus infection in Italy over a 10-year period: Clues from the nationwide PITER and MASTER cohorts toward elimination

    Get PDF
    Objectives: The study measures trends in the profile of patients with chronic hepatitis B virus linked to care in Italy. Methods: A cross-sectional, multicenter, observational cohort (PITER cohort) of consecutive patients with hepatitis B surface antigen (HBsAg) over the period 2019-2021 from 46 centers was evaluated. The reference was the MASTER cohort collected over the years 2012-2015. Standard statistical methods were used. Results: The PITER cohort enrolled 4583 patients, of whom 21.8% were non-Italian natives. Compared with those in MASTER, the patients were older and more often female. The prevalence of hepatitis B e antigen (HBeAg) declined (7.2% vs 12.3; P <0.0001) and that of anti-hepatitis D virus (HDV) remained stable (9.3% vs 8.3%). In both cohorts, about 25% of the patients had cirrhosis, and those in the PITER cohort were older. HBeAg-positive was 5.0% vs 12.6% (P <0.0001) and anti-HDV positive 24.8% vs 17.5% (P <0.0017). In the logistic model, the variables associated with cirrhosis were anti-HDV-positive (odds ratio = 10.08; confidence interval 7.63-13.43), age, sex, and body mass index; the likelihood of cirrhosis was reduced by 40% in the PITER cohort. Among non-Italians, 12.3% were HBeAg-positive (vs 23.4% in the MASTER cohort; P <0.0001), and 12.3% were anti-HDV-positive (vs 11.1%). Overall, the adherence to the European Association for the Study of the Liver recommendations for antiviral treatment increased over time. Conclusion: Chronic hepatitis B virus infection appears to be in the process of becoming under control in Italy; however, HDV infection is still a health concern in patients with cirrhosis and in migrants

    CUBES: a UV spectrograph for the future

    Get PDF
    In spite of the advent of extremely large telescopes in the UV/optical/NIR range, the current generation of 8-10m facilities is likely to remain competitive at ground-UV wavelengths for the foreseeable future. The Cassegrain U-Band Efficient Spectrograph (CUBES) has been designed to provide high-efficiency (>40%) observations in the near UV (305-400 nm requirement, 300-420 nm goal) at a spectral resolving power of R>20,000, although a lower-resolution, sky-limited mode of R ~ 7,000 is also planned. CUBES will offer new possibilities in many fields of astrophysics, providing access to key lines of stellar spectra: a tremendous diversity of iron-peak and heavy elements, lighter elements (in particular Beryllium) and light-element molecules (CO, CN, OH), as well as Balmer lines and the Balmer jump (particularly important for young stellar objects). The UV range is also critical in extragalactic studies: the circumgalactic medium of distant galaxies, the contribution of different types of sources to the cosmic UV background, the measurement of H2 and primordial Deuterium in a regime of relatively transparent intergalactic medium, and follow-up of explosive transients. The CUBES project completed a Phase A conceptual design in June 2021 and has now entered the Phase B dedicated to detailed design and construction. First science operations are planned for 2028. In this paper, we briefly describe the CUBES project development and goals, the main science cases, the instrument design and the project organization and management

    Dust Environment Model of the Interstellar Comet 2I/Borisov

    Get PDF
    2I/Borisov is the first interstellar comet discovered on 2019 August 30, and it soon showed a coma and a dust tail. This study reports the results of images obtained at the Telescopio Nazionale Galileo telescope, on La Palma - Canary Islands, in 2019 November and December. The images have been obtained with the R filter in order to apply our dust tail model. The model has been applied to the comet 67P/Churyumov-Gerasimenko and compared to the Rosetta dust measurements showing a very good agreement. It has been applied to the comet 2I/Borisov, using almost the same parameters, obtaining a dust environment similar to that of 67P/Churyumov-Gerasimenko, suggesting that the activity may be very similar. The dust tail analysis provided a dust-loss rate Qd ≍ 35 kg s-1 in 2019 November and Qd ≍ 30 kg s-1 in 2019 December

    A high-spectral-resolution catalog of emission lines in the visible spectrum of comet C/2020 F3 (NEOWISE)

    No full text
    Aims. Comet C/2020 F3 (NEOWISE) is considered to be the brightest comet observed in the northern hemisphere since the passage of comet C/1995 O1 (Hale-Bopp) in 1997. Since the study of comets offers a unique opportunity to investigate the early stages of the formation and evolution of our Sun and the Solar System, we obtained high-resolution optical spectra (R = λ/Δλ = 11 5000) of comet NEOWISE. The unique passage and its brightness yielded spectra with a large number of emission lines, providing information on the coma composition and the physical and chemical processes occurring in the nucleus. The spectra have been used to generate a catalog of emission lines to be used for future studies of comets since there are no catalogs in the literature with such a high spectral resolution. Methods. Two high-resolution spectra of comet NEOWISE were obtained, on 26 July 2020 (geocentric distance of 0.7 AU) and 5 August 2020 (geocentric distance of 0.89 AU), with the High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N) echelle spectrograph installed on the 360 cm Telescopio Nazionale Galileo. The spectra cover the range between 383 and 693 nm, and have been extracted using the HARPS-N Data Reduction Pipeline. To analyze the spectra and compile the high-resolution catalog, we collected several laboratory molecular line lists that cover the same wavelength range as that of our spectra. To validate the final identification, we compared our catalog with other atlases that resulted from the spectral analysis of other comets. Results. We generate a high-spectral-resolution catalog of emission lines observed in comet NEOWISE, providing the identification for 4488 lines. We found cometary lines due to CN, CH, C2, C3, and NH2 and atomic lines due to NaI and [OI]

    Topographic correction of HiRISE and CaSSIS images: Validation and application to color observations of Martian albedo features

    No full text
    The topographic correction of satellite images has to be applied to both disentangle albedo features from illumination effects induced by local topography and performspectrophotometric analyses of planetary surfaces. This work focuses on the modeling and removal of surface brightness variations induced by topography, referred astopographic shading, from high resolution images of Mars. Topographic shading can be modeled through functions of the surface illumination and observation anglescalled disk functions. We consider four disk functions that are widely used in planetary photometry: the Lambert, Lommel-Seeliger, Akimov and Minnaert diskfunctions. We test and evaluate their performances in removing topographic shading from High Resolution Imaging Science Experiment (HiRISE) and Colour andSurface Science Imaging System (CaSSIS) images. We here validate our method, moreover, we report scientific applications to single or multi-band datasets byanalyzing topographically corrected HiRISE colour observations of Martian recurring slope lineae and dust devil tracks, as well as CaSSIS panchromatic observations

    Preparation of New PLGA/PAA Nanoparticles for Biomedical Applications

    No full text
    In the last years, the interest for nano- and micro-structured materials in biology and medicine is enormously increased. In particular, the use of nano- and micro-particles (NPs) for delivery drugs and contrast agents in vivo became attractive, due to their potential applicative use in diagnosis and therapy of widespread diseases such as tumors and neurodegenerative diseases. In spite of this big scientific and economic interest, only a few products based on NPs technologies have come to industrial production and distribution. The partial failure is due to complex reasons, such as the difficulty of designing NPs for biomedical applications with advanced features of biocompatibility, biomimicry and targeting. Only a few of the NPs already existing can be used in vivo, mainly because of their scarce targeting specificity and/or biocompatibility. The aim of our work is the preparation of new nanoparticles for drug delivery to tumors and brain, with improved feature of biocompatibility/biomimicry and targeting specificity, constituted by a core of poly-lactic-co-glycolic acid (PLGA) with a corona of poly(amidoamine) (PAA)
    corecore