2,044 research outputs found

    Casimir energy and the superconducting phase transition

    Full text link
    We study the influence of Casimir energy on the critical field of a superconducting film, and we show that by this means it might be possible to directly measure, for the first time, the variation of Casimir energy that accompanies the superconducting transition. It is shown that this novel approach may also help clarifying the long-standing controversy on the contribution of TE zero modes to the Casimir energy in real materials.Comment: 12 pages, 5 figures. Talk given at 7th Workshop on Quantum Field Theory Under the Influence of External Conditions (QFEXT 05), Barcelona, Catalonia, Spain, 5-9 Sep 200

    Study of RPC gas mixtures for the ARGO-YBJ experiment

    Get PDF
    The ARGO-YBJ experiment consists of a RPC carpet to be operated at the Yangbajing laboratory (Tibet, P.R. China), 4300 m a.s.l., and devoted to the detection of showers initiated by photon primaries in the energy range 100 GeV - 20 TeV. The measurement technique, namely the timing on the shower front with a few tens of particles, requires RPC operation with 1 ns time resolution, low strip multiplicity, high efficiency and low single counting rate. We have tested RPCs with many gas mixtures, at sea level, in order to optimize these parameters. The results of this study are reported.Comment: 6 pages, 3 figures. To be published in Nucl. Instr. Meth. A, talk given at the "5th International Workshop on RPCs and Related Detectors", Bari (Italy) 199

    Gravitational effects on a rigid Casimir cavity

    Get PDF
    Vacuum fluctuations produce a force acting on a rigid Casimir cavity in a weak gravitational field. Such a force is here evaluated and is found to have opposite direction with respect to the gravitational acceleration; the order of magnitude for a multi-layer cavity configuration is analyzed and experimental detection is discussed, bearing in mind the current technological resources.Comment: 7 pages, Latex. Talk given at the Fifth Leipzig Workshop on Quantum Field Theory under the Influence of External Conditions, September 200

    Low noise cryogenic system for the measurement of Casimir energy in rigid cavities

    Full text link
    We report on preliminary results on the measurement of variations of the Casimir energy in rigid cavities through its influence on the superconducting transition of in-cavity aluminium (Al) thin films. After a description of the experimental apparatus we report on a measurement made with thermal photons, discussing its implications for the zero-point photons case. Finally we show the preliminary results for the zero-point case.Comment: 9 pages, 7 figures, Talk given at QFEXT07 Conference in Liepzig: Quantum Field Theory Under the Influence of External Condition

    Positron localization effects on the Doppler broadening of the annihilation line: Aluminum as a case study

    Get PDF
    The coincidence Doppler broadening (CDB) technique is widely used to measure one-dimensional momentum distributions of annihilation photons, with the aim of obtaining information on the chemical environment of open-volume defects. However, the quantitative analysis of CDB spectra needs to include also purely geometrical effects. A demonstration is given here, on the basis of CDB spectra measured in quenched and in deformed pure aluminum. The comparison of the experimental results with ab initio computations shows that the observed differences come from the difference in free volume seen by positrons trapped in quenched-in vacancies or in vacancylike defects associated to dislocations. The computation reproduces accurately all details of CDB spectra, including the peak near the Fermi break, which is due to the zero-point motion of the confined positron.Peer reviewe

    Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas

    Get PDF
    Low energy non linear QED effects in vacuum have been predicted since 1936 and have been subject of research for many decades. Two main schemes have been proposed for such a 'first' detection: measurements of ellipticity acquired by a linearly polarized beam of light passing through a magnetic field and direct light-light scattering. The study of the propagation of light through an external field can also be used to probe for new physics such as the existence of axion-like particles and millicharged particles. Their existence in nature would cause the index of refraction of vacuum to be different from unity in the presence of an external field and dependent of the polarization direction of the light propagating. The major achievement of reaching the project sensitivities in gravitational wave interferometers such as LIGO an VIRGO has opened the possibility of using such instruments for the detection of QED corrections in electrodynamics and for probing new physics at very low energies. In this paper we discuss the difference between direct birefringence measurements and index of refraction measurements. We propose an almost parasitic implementation of an external magnetic field along the arms of the VIRGO interferometer and discuss the advantage of this choice in comparison to a previously proposed configuration based on shorter prototype interferometers which we believe is inadequate. Considering the design sensitivity in the strain, for the near future VIRGO+ interferometer, of h<210231Hzh<2\cdot10^{-23} \frac{1}{\sqrt{\rm Hz}} in the range 40 Hz 400- 400 Hz leads to a variable dipole magnet configuration at a frequency above 20 Hz such that B2D13000B^{2}D \ge 13000 T2^{2}m/Hz\sqrt{\rm Hz} for a `first' vacuum non linear QED detection

    Dynamical Casimir Effect with Semi-Transparent Mirrors, and Cosmology

    Full text link
    After reviewing some essential features of the Casimir effect and, specifically, of its regularization by zeta function and Hadamard methods, we consider the dynamical Casimir effect (or Fulling-Davis theory), where related regularization problems appear, with a view to an experimental verification of this theory. We finish with a discussion of the possible contribution of vacuum fluctuations to dark energy, in a Casimir like fashion, that might involve the dynamical version.Comment: 11 pages, Talk given in the Workshop ``Quantum Field Theory under the Influence of External Conditions (QFEXT07)'', Leipzig (Germany), September 17 - 21, 200

    Reconstruction of the gravitational wave signal h(t)h(t) during the Virgo science runs and independent validation with a photon calibrator

    Full text link
    The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t)h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t)h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t)h(t) signal and the associated uncertainties. The uncertainties of the h(t)h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t)h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 μ\mus at high frequency. A bias lower than 4μs4\,\mathrm{\mu s} and depending on the sky direction of the GW is also present.Comment: 35 pages, 16 figures. Accepted by CQ

    Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity

    Full text link
    From the beginning of the subject, calculations of quantum vacuum energies or Casimir energies have been plagued with two types of divergences: The total energy, which may be thought of as some sort of regularization of the zero-point energy, 12ω\sum\frac12\hbar\omega, seems manifestly divergent. And local energy densities, obtained from the vacuum expectation value of the energy-momentum tensor, T00\langle T_{00}\rangle, typically diverge near boundaries. The energy of interaction between distinct rigid bodies of whatever type is finite, corresponding to observable forces and torques between the bodies, which can be unambiguously calculated. The self-energy of a body is less well-defined, and suffers divergences which may or may not be removable. Some examples where a unique total self-stress may be evaluated include the perfectly conducting spherical shell first considered by Boyer, a perfectly conducting cylindrical shell, and dilute dielectric balls and cylinders. In these cases the finite part is unique, yet there are divergent contributions which may be subsumed in some sort of renormalization of physical parameters. The divergences that occur in the local energy-momentum tensor near surfaces are distinct from the divergences in the total energy, which are often associated with energy located exactly on the surfaces. However, the local energy-momentum tensor couples to gravity, so what is the significance of infinite quantities here? For the classic situation of parallel plates there are indications that the divergences in the local energy density are consistent with divergences in Einstein's equations; correspondingly, it has been shown that divergences in the total Casimir energy serve to precisely renormalize the masses of the plates, in accordance with the equivalence principle.Comment: 53 pages, 1 figure, invited review paper to Lecture Notes in Physics volume in Casimir physics edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Ros
    corecore