253 research outputs found
LightBox: a multiwell plate illumination system for photoactive molecule characterization
Multiwell plates (MWPs) are the workhorses of the life sciences. However, biophotonics research with MWPs is limited, in part due to the lack of equipment suitable for photo‐irradiation of photoactive molecules in a MWP‐suitable, high‐throughput manner, either commercially or through open‐source MWP systems. Here we present “LightBox”, a calibrated controllable MWP illumination system with broad applications including screening of photoactive molecules and characterization of photocatalytic chemicals. LightBox is a high intensity, accurately controllable, uniform illumination system designed for MWPs with electronics and a control unit that provides a simple and intuitive interface. LightBox can reach intensities of 0.23 mW/mm2 at wavelengths of 405 nm with variance between well sites of <5%. The usefulness of LightBox is demonstrated by assessing the IC50 of a photosensitizing compound using a live/dead assay following simultaneous irradiation of the sample at a range of concentrations, eliminating uncontrolled variables between concentrations and drastically increasing assessment speed
Molecular velocity auto-correlation of simple liquids observed by NMR MGSE method
The velocity auto-correlation spectra of simple liquids obtained by the NMR
method of modulated gradient spin echo show features in the low frequency range
up to a few kHz, which can be explained reasonably well by a long
time tail decay only for non-polar liquid toluene, while the spectra of polar
liquids, such as ethanol, water and glycerol, are more congruent with the model
of diffusion of particles temporarily trapped in potential wells created by
their neighbors. As the method provides the spectrum averaged over ensemble of
particle trajectories, the initial non-exponential decay of spin echoes is
attributed to a spatial heterogeneity of molecular motion in a bulk of liquid,
reflected in distribution of the echo decays for short trajectories. While at
longer time intervals, and thus with longer trajectories, heterogeneity is
averaged out, giving rise to a spectrum which is explained as a combination of
molecular self-diffusion and eddy diffusion within the vortexes of hydrodynamic
fluctuations.Comment: 8 pages, 6 figur
Investigation of the ferromagnetic transition in the correlated 4d perovskites SrRuRhO
The solid-solution SrRuRhO () is a
variable-electron-configuration system forming in the nearly-cubic-perovskite
basis, ranging from the ferromagnetic 4 to the enhanced paramagnetic
4. Polycrystalline single-phase samples were obtained over the whole
composition range by a high-pressure-heating technique, followed by
measurements of magnetic susceptibility, magnetization, specific heat,
thermopower, and electrical resistivity. The ferromagnetic order in long range
is gradually suppressed by the Rh substitution and vanishes at .
The electronic term of specific-heat shows unusual behavior near the critical
Rh concentration; the feature does not match even qualitatively with what was
reported for the related perovskites (Sr,Ca)RuO. Furthermore, another
anomaly in the specific heat was observed at .Comment: Accepted for publication in PR
Phase Separation of Rigid-Rod Suspensions in Shear Flow
We analyze the behavior of a suspension of rigid rod-like particles in shear
flow using a modified version of the Doi model, and construct diagrams for
phase coexistence under conditions of constant imposed stress and constant
imposed strain rate, among paranematic, flow-aligning nematic, and log-rolling
nematic states. We calculate the effective constitutive relations that would be
measured through the regime of phase separation into shear bands. We calculate
phase coexistence by examining the stability of interfacial steady states and
find a wide range of possible ``phase'' behaviors.Comment: 23 pages 19 figures, revised version to be published in Physical
Review
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection
A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object
We report the observation of a compact binary coalescence involving a 22.2–24.3 Me black hole and a compact object with a mass of 2.50–2.67 Me (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s and Virgo’s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of - + 241 45
41 Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, - + 0.112 0.009 0.008, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The
dimensionless spin of the primary black hole is tightly constrained to �0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources
that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries
- …
