960 research outputs found

    Metabolic plasticity of mixotrophic algae is key for their persistence in browning environments

    Get PDF
    Light availability is the main regulator of primary production, shaping photosynthetic communities and their production of ecologically important biomolecules. In freshwater ecosystems, increasing dissolved organic carbon (DOC) concentrations, commonly known as browning, leads to lower light availability and the proliferation of mixotrophic phytoplankton. Here, a mixotrophic algal species (Cryptomonas sp.) was grown under five increasing DOC concentrations to uncover the plastic responses behind the success of mixotrophs in browning environments and their effect in the availability of nutritionally important biomolecules. In addition to the browning treatments, phototrophic, heterotrophic and mixotrophic growth conditions were used as controls. Despite reduced light availability, browning did not impair algal growth compared to phototrophic conditions. Comparative transcriptomics showed that genes related to photosynthesis were down-regulated, whereas phagotrophy gene categories (phagosome, lysosome and endocytosis) were up-regulated along the browning gradient. Stable isotope analysis of phospholipid fractions validated these results, highlighting that the studied mixotroph increases its reliance on heterotrophic processes with browning. Metabolic pathway reconstruction using transcriptomic data suggests that organic carbon is acquired through phagotrophy and used to provide energy in conjunction with photosynthesis. Although metabolic responses to browning were observed, essential fatty acid content was similar between treatments while sterol content was slightly higher upon browning. Together, our results provide a mechanistic model of how a mixotrophic alga responds to browning and how such responses affect the availability of nutritionally essential biomolecules for higher trophic levels.Peer reviewe

    Resolving phytoplankton pigments from spectral images using convolutional neural networks

    Get PDF
    Motivated by the need for rapid and robust monitoring of phytoplankton in inland waters, this article introduces a protocol based on a mobile spectral imager for assessing phytoplankton pigments from water samples. The protocol includes (1) sample concentrating; (2) spectral imaging; and (3) convolutional neural networks (CNNs) to resolve concentrations of chlorophyll a (Chl a), carotenoids, and phycocyanin. The protocol was demonstrated with samples from 20 lakes across Scotland, with special emphasis on Loch Leven where blooms of cyanobacteria are frequent. In parallel, samples were prepared for reference observations of Chl a and carotenoids by high-performance liquid chromatography and of phycocyanin by spectrophotometry. Robustness of the CNNs were investigated by excluding each lake from model trainings one at a time and using the excluded data as independent test data. For Loch Leven, median absolute percentage difference (MAPD) was 15% for Chl a and 36% for carotenoids. MAPD in estimated phycocyanin concentration was high (102%); however, the system was able to indicate the possibility of a cyanobacteria bloom. In the leave-one-out tests with the other lakes, MAPD was 26% for Chl a, 27% for carotenoids, and 75% for phycocyanin. The higher error for phycocyanin was likely due to variation in the data distribution and reference observations. It was concluded that this protocol could support phytoplankton monitoring by using Chl a and carotenoids as proxies for biomass. Greater focus on the distribution and volume of the training data would improve the phycocyanin estimates

    Measurement of the quasi-elastic axial vector mass in neutrino-oxygen interactions

    Get PDF
    The weak nucleon axial-vector form factor for quasi-elastic interactions is determined using neutrino interaction data from the K2K Scintillating Fiber detector in the neutrino beam at KEK. More than 12,000 events are analyzed, of which half are charged-current quasi-elastic interactions nu-mu n to mu- p occurring primarily in oxygen nuclei. We use a relativistic Fermi gas model for oxygen and assume the form factor is approximately a dipole with one parameter, the axial vector mass M_A, and fit to the shape of the distribution of the square of the momentum transfer from the nucleon to the nucleus. Our best fit result for M_A = 1.20 \pm 0.12 GeV. Furthermore, this analysis includes updated vector form factors from recent electron scattering experiments and a discussion of the effects of the nucleon momentum on the shape of the fitted distributions.Comment: 14 pages, 10 figures, 6 table

    Search for the W-exchange decays B0 --> Ds(*)- Ds(*)+

    Full text link
    We report a search for the decays B0→Ds−Ds+B^{0} \to D_{s}^{-} D_{s}^{+}, B0→Ds∗−Ds+B^{0} \to D_{s}^{*-} D_{s}^{+}, B0→Ds∗−Ds∗+B^{0} \to D_{s}^{*-} D_{s}^{*+} in a sample of 232 million Υ(4S)\Upsilon(4S) decays to \BBb ~pairs collected with the \babar detector at the PEP-II asymmetric-energy e+e−e^+ e^- storage ring. We find no significant signal and set upper bounds for the branching fractions: B(B0→Ds−Ds+)<1.0×10−4,B(B0→Ds∗−Ds+)<1.3×10−4{\cal B}(B^{0} \to D_{s}^{-} D_{s}^{+}) < 1.0 \times 10^{-4}, {\cal B}(B^{0} \to D_{s}^{*-} D_{s}^{+}) < 1.3 \times 10^{-4} and B(B0→Ds∗−Ds∗+)<2.4×10−4{\cal B}(B^{0} \to D_{s}^{*-} D_{s}^{*+}) < 2.4 \times 10^{-4} at 90% confidence level.Comment: 8 pages, 2 figures, submitted to PRD-R

    Measurement of the B+ --> p pbar K+ Branching Fraction and Study of the Decay Dynamics

    Get PDF
    With a sample of 232x10^6 Upsilon(4S) --> BBbar events collected with the BaBar detector, we study the decay B+ --> p pbar K+ excluding charmonium decays to ppbar. We measure a branching fraction Br(B+ --> p pbar K+)=(6.7+/-0.5+/-0.4)x10^{-6}. An enhancement at low ppbar mass is observed and the Dalitz plot asymmetry suggests dominance of the penguin amplitude in this B decay. We search for a pentaquark candidate Theta*++ decaying into pK+ in the mass range 1.43 to 2.00 GeV/c2 and set limits on Br(B+ --> Theta*++pbar)xBr(Theta*++ --> pK+) at the 10^{-7} level.Comment: 8 pages, 7 postscript figures, submitted to Phys. Rev. D (Rapid Communications

    Search for rare quark-annihilation decays, B --> Ds(*) Phi

    Full text link
    We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context of the Standard Model, these decays are expected to be highly suppressed since they proceed through annihilation of the b and u-bar quarks in the B- meson. Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected with the BABAR detector at SLAC. We find no evidence for these decays, and we set Bayesian 90% confidence level upper limits on the branching fractions BF(B- --> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid Communications

    Evidence for increasing global wheat yield potential

    Get PDF
    Wheat is the most widely grown food crop, with 761 Mt produced globally in 2020. To meet the expected grain demand by mid-century, wheat breeding strategies must continue to improve upon yield-advancing physiological traits, regardless of climate change impacts. Here, the best performing doubled haploid (DH) crosses with an increased canopy photosynthesis from wheat field experiments in the literature were extrapolated to the global scale with a multi-model ensemble of process-based wheat crop models to estimate global wheat production. The DH field experiments were also used to determine a quantitative relationship between wheat production and solar radiation to estimate genetic yield potential. The multi-model ensemble projected a global annual wheat production of 1050 +/- 145 Mt due to the improved canopy photosynthesis, a 37% increase, without expanding cropping area. Achieving this genetic yield potential would meet the lower estimate of the projected grain demand in 2050, albeit with considerable challenges

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR &lt; 60 mL/min/1.73 m2) or eGFR reduction &gt; 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR &lt; 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR &gt; 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Evidence for X(3872) → Ψ (2S)y in B^± → X(3872)K^± Decays and a Study of B → ccyK

    Get PDF
    In a search for B → ccyK decays with the BABAR detector, where cc includes J/Ψ and Ψ (2S), and K includes K^±, K^0_S , and K^*(892), we find evidence for X(3872) → J/Ψy and X(3872) → Ψ (2S) with 3:6σ and 3:5σ significance, respectively. We measure the product of branching fractions B(B^± → X(3872)K^±)B(X(3872) → J/Ψy)= [2:8 ± 0:8(stat) ± 0:1(syst)]X 10^(-6) and B(B^± → X(3872)K^±) X B(X(3872) → Ψ (2S)y) = [9:5 ± 2:7(stat) ± 0:6(syst)] X 10^(-6)

    Measurement of D^0-D̅ ^0 Mixing from a Time-Dependent Amplitude Analysis of D^0→K^+π^-π^0 Decays

    Get PDF
    We present evidence of D^0-D̅ ^0 mixing using a time-dependent amplitude analysis of the decay D^0→K^+π^-π^0 in a data sample of 384  fb^(-1) collected with the BABAR detector at the PEP-II e^+e^- collider at the Stanford Linear Accelerator Center. Assuming CP conservation, we measure the mixing parameters x_(Kππ)^(0′)=[2.61_(-0.68)^(+0.57)(stat)±0.39(syst)]%, y_(Kππ)^(0′)=[-0.06_(-0.64)^(+0.55)(stat)±0.34(syst)]%. This result is inconsistent with the no-mixing hypothesis with a significance of 3.2 standard deviations. We find no evidence of CP violation in mixing
    • …
    corecore