24 research outputs found
The impact of COVID-19 lock-downs for European (female) immunologists - our views as members of the EFIS gender and diversity task force
17 p.-1 fig.Peer reviewe
Interleukin-15 Plays a Central Role in Human Kidney Physiology and Cancer through the Îłc Signaling Pathway
The ability of Interleukin-15 (IL-15) to activate many immune antitumor mechanisms renders the cytokine a good candidate for the therapy of solid tumors, particularly renal cell carcinoma. Although IL-15 is being currently used in clinical trials, the function of the cytokine on kidney's components has not been extensively studied; we thus investigated the role of IL-15 on normal and tumor renal epithelial cells. Herein, we analyzed the expression and the biological functions of IL-15 in normal renal proximal tubuli (RPTEC) and in their neoplastic counterparts, the renal clear cell carcinomas (RCC). This study shows that RPTEC express a functional heterotrimeric IL-15RαÎČÎłc complex whose stimulation with physiologic concentrations of rhIL-15 is sufficient to inhibit epithelial mesenchymal transition (EMT) commitment preserving E-cadherin expression. Indeed, IL-15 is not only a survival factor for epithelial cells, but it can also preserve the renal epithelial phenotype through the Îłc-signaling pathway, demonstrating that the cytokine possess a wide range of action in epithelial homeostasis. In contrast, in RCC in vitro and in vivo studies reveal a defect in the expression of Îłc-receptor and JAK3 associated kinase, which strongly impacts IL-15 signaling. Indeed, in the absence of the Îłc/JAK3 couple we demonstrate the assembly of an unprecedented functional high affinity IL-15RαÎČ heterodimer, that in response to physiologic concentrations of IL-15, triggers an unbalanced signal causing the down-regulation of the tumor suppressor gene E-cadherin, favoring RCC EMT process. Remarkably, the rescue of IL-15/Îłc-dependent signaling (STAT5), by co-transfecting Îłc and JAK3 in RCC, inhibits EMT reversion. In conclusion, these data highlight the central role of IL-15 and Îłc-receptor signaling in renal homeostasis through the control of E-cadherin expression and preservation of epithelial phenotype both in RPTEC (up-regulation) and RCC (down-regulation)
Generation of a Novel Regulatory NK Cell Subset from Peripheral Blood CD34+ Progenitors Promoted by Membrane-Bound IL-15
BACKGROUND: NK cells have been long time considered as cytotoxic lymphocytes competent in killing virus-infected cells and tumors. However, NK cells may also play essential immuno-regulatory functions. In this context, the real existence of a defined NK subset with negative regulatory properties has been hypothesized but never clearly demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we show the in vitro generation from human peripheral blood haematopoietic progenitors (PB-HP), of a novel subset of non-cytolytic NK cells displaying a mature phenotype and remarkable immuno-regulatory functions (NK-ireg). The main functional hallmark of these NK-ireg cells is represented by the surface expression/release of HLA-G, a major immunosuppressive molecule. In addition, NK-ireg cells secrete two powerful immuno-regulatory factors: IL-10 and IL-21. Through these factors, NK-ireg cells act as effectors of the down-regulation of the immune response: reconverting mature myeloid DC (mDC) into immature/tolerogenic DC, blocking cytolytic functions on conventional NK cells and inducing HLA-G membrane expression on PB-derived monocytes. The generation of "NK-ireg" cells is obtained, by default, in culture conditions favouring cell-to-cell contacts, and it is strictly dependent on reciprocal trans-presentation of membrane-bound IL-15 forms constitutively and selectively expressed by human CD34(+) PB-HP. Finally, a small subset of NKp46(+) HLA-G(+) IL-10(+) is detected within freshly isolated decidual NK cells, suggesting that these cells could represent an in vivo counterpart of the NK-ireg cells. CONCLUSIONS/SIGNIFICANCE: In conclusion, NK-ireg cells represent a novel truly differentiated non-cytolytic NK subset with a self-sustainable phenotype (CD56(+) CD16(+) NKp30(+) NKp44(+) NKp46(+) CD94(+) CD69(+) CCR7(+)) generated from specific pSTAT6(+) GATA3(+) precursors. NK-ireg cells could be employed to develop new immuno-suppressive strategies in autoimmune diseases, transplant rejection or graft versus host diseases. In addition, NK-ireg cells can be easily derived from peripheral blood of the patients and could constitute an autologous biotherapic tool to be used combined or in alternative to other immuno-regulatory cells
Classification of current anticancer immunotherapies
During the past decades, anticancer immunotherapy has evolved from a promising
therapeutic option to a robust clinical reality. Many immunotherapeutic regimens are
now approved by the US Food and Drug Administration and the European Medicines
Agency for use in cancer patients, and many others are being investigated as standalone
therapeutic interventions or combined with conventional treatments in clinical
studies. Immunotherapies may be subdivided into âpassiveâ and âactiveâ based on
their ability to engage the host immune system against cancer. Since the anticancer
activity of most passive immunotherapeutics (including tumor-targeting monoclonal
antibodies) also relies on the host immune system, this classification does not properly
reflect the complexity of the drug-host-tumor interaction. Alternatively, anticancer
immunotherapeutics can be classified according to their antigen specificity. While some
immunotherapies specifically target one (or a few) defined tumor-associated antigen(s),
others operate in a relatively non-specific manner and boost natural or therapy-elicited
anticancer immune responses of unknown and often broad specificity. Here, we propose
a critical, integrated classification of anticancer immunotherapies and discuss the clinical
relevance of these approaches
The Mouse Cytomegalovirus Gene m42 Targets Surface Expression of the Protein Tyrosine Phosphatase CD45 in Infected Macrophages
The receptor-like protein tyrosine phosphatase CD45 is expressed on the surface of cells of hematopoietic origin and has a pivotal role for the function of these cells in the immune response. Here we report that following infection of macrophages with mouse cytomegalovirus (MCMV) the cell surface expression of CD45 is drastically diminished. Screening of a set of MCMV deletion mutants allowed us to identify the viral gene m42 of being responsible for CD45 down-modulation. Moreover, expression of m42 independent of viral infection upon retroviral transduction of the RAW264.7 macrophage cell line led to comparable regulation of CD45 expression. In immunocompetent mice infected with an m42 deletion mutant lower viral titers were observed in all tissues examined when compared to wildtype MCMV, indicating an important role of m42 for viral replication in vivo. The m42 gene product was identified as an 18 kDa protein expressed with early kinetics and is predicted to be a tailanchored membrane protein. Tracking of surface-resident CD45 molecules revealed that m42 induces internalization and degradation of CD45. The observation that the amounts of the E3 ubiquitin ligases Itch and Nedd4 were diminished in cells expressing m42 and that disruption of a PY motif in the N-terminal part of m42 resulted in loss of function, suggest that m42 acts as an activator or adaptor for these Nedd4-like ubiquitin ligases, which mark CD45 for lysosomal degradation. In conclusion, the down-modulation of CD45 expression in MCMV-infected myeloid cells represents a novel pathway of virus-host interaction
Synthesis of potential Rho-kinase inhibitors based on the chemistry of an original heterocycle: the 4,4-dimethyl-3,4-dihydro-1H-quinolin-2-one.
International audienc
Mutations of the von HippelâLindau gene confer increased susceptibility to natural killer cells of clear-cell renal cell carcinoma
International audienceThe tumor suppressor gene von Hippel-Lindau (VHL) is involved in the development of sporadic clear-cell renal cell carcinoma (RCC). VHL interferes with angiogenesis and also controls cell adhesion and invasion. Therapies that target VHL-controlled genes are currently being evaluated in RCC patients. RCC is a immunogenic tumor and treatment with interleukin-2 (IL2) or interferon (IFN)-a results in regression in some patients. We used two renal tumor cell lines (RCC6 and RCC4) carrying VHL loss-of-function mutations to investigate the role of mutant VHL in susceptibility to natural killer (NK) cellmediated lysis. The RCC6 and RCC4 cell lines were transfected with the wild-type gene to restore the function of VHL. The presence of the gene in RCC cells downregulated hypoxia-inducible factor (HIF)-1a and subsequently decreased vascular endothelial growth factor (VEGF) production. Relative to control transfectants and parental cells, pVHL-transfected cell lines activated resting and IL2-activated NK cells less strongly, as assessed by IFNc secretion, NK degranulation and cell lysis. NKG2A, a human leukocyte antigen (HLA)-Ispecific inhibitory NK receptor, controls the lysis of tumor targets. We show that HLA-I expression in RCC-pVHL cells is stronger than that in parental and controls cells, although the expression of activating receptor NK ligands remains unchanged. Blocking NKG2A/HLA-I interactions substantially increased lysis of RCC-pVHL, but had little effect on the lysis of VHL-mutated RCC cell lines. In addition, in response to IFNa, the exponential growth of RCC-pVHL was inhibited more than that of RCC-pE cells, indicating that VHL mutations may be involved in IFNa resistance. These results indicate that a decreased expression of HLA-I molecules in mutated VHL renal tumor cells sensitizes them to NK-mediated lysis. These results suggest that combined immunotherapy with antiangiogenic drugs may be beneficial for patients with mutated VHL
Synthesis of new 8(S)-HETE analogs and their biological evaluation as activators of the PPAR nuclear receptors.
International audienc