14 research outputs found

    Parabrachial Neurons Promote Behavior and Electroencephalographic Arousal From General Anesthesia

    Get PDF
    General anesthesia has been used clinically for more than 170 years, yet its underlying mechanisms are still not fully understood. The parabrachial nucleus (PBN) in the brainstem has been known to be crucial for regulating wakefulness and signs of arousal on the cortical electroencephalogram (EEG). Lesions of the parabrachial complex lead to unresponsiveness and a monotonous high-voltage, and a slow-wave EEG, which are the two main features of general anesthesia. However, it is unclear whether and how the PBN functions in the process of general anesthesia. By recording the levels of calcium in vivo in real-time, we found that the neural activity in PBN is suppressed during anesthesia, while it is robustly activated during recovery from propofol and isoflurane anesthesia. The activation of PBN neurons by “designer receptors exclusively activated by designer drugs” (DREADDs) shortened the recovery time but did not change the induction time. Cortical EEG recordings revealed that the neural activation of PBN specifically affected the recovery period, with a decrease of δ-band power or an increase in β-band power; no EEG changes were seen in the anesthesia period. Furthermore, the activation of PBN elicited neural activation in the prefrontal cortex, basal forebrain, lateral hypothalamus, thalamus, and supramammillary nucleus. Thus, PBN is critical for behavioral and electroencephalographic arousal without affecting the induction of general anesthesia

    A Unified Single-stage Learning Model for Estimating Fiber Orientation Distribution Functions on Heterogeneous Multi-shell Diffusion-weighted MRI

    Full text link
    Diffusion-weighted (DW) MRI measures the direction and scale of the local diffusion process in every voxel through its spectrum in q-space, typically acquired in one or more shells. Recent developments in micro-structure imaging and multi-tissue decomposition have sparked renewed attention to the radial b-value dependence of the signal. Applications in tissue classification and micro-architecture estimation, therefore, require a signal representation that extends over the radial as well as angular domain. Multiple approaches have been proposed that can model the non-linear relationship between the DW-MRI signal and biological microstructure. In the past few years, many deep learning-based methods have been developed towards faster inference speed and higher inter-scan consistency compared with traditional model-based methods (e.g., multi-shell multi-tissue constrained spherical deconvolution). However, a multi-stage learning strategy is typically required since the learning process relied on various middle representations, such as simple harmonic oscillator reconstruction (SHORE) representation. In this work, we present a unified dynamic network with a single-stage spherical convolutional neural network, which allows efficient fiber orientation distribution function (fODF) estimation through heterogeneous multi-shell diffusion MRI sequences. We study the Human Connectome Project (HCP) young adults with test-retest scans. From the experimental results, the proposed single-stage method outperforms prior multi-stage approaches in repeated fODF estimation with shell dropoff and single-shell DW-MRI sequences

    AMPK attenuates SHH subgroup medulloblastoma growth and metastasis by inhibiting NF-κB activation

    No full text
    Abstract Background Medulloblastoma (MB) is one of the most common malignant pediatric brain tumors. Metastasis and relapse are the leading causes of death in MB patients. The initiation of the SHH subgroup of MB (SHH-MB) is due to the aberrant activation of Sonic Hedgehog (Shh) signaling. However, the mechanisms for its metastasis are still unknown. Results AMP-dependent protein kinase (AMPK) restrains the activation of Shh signaling pathway, thereby impeding the proliferation of SHH-MB cells. More importantly, AMPK also hinders the growth and metastasis of SHH-MB cells by regulating NF-κB signaling pathway. Furthermore, Vismodegib and TPCA-1, which block the Shh and NF-κB pathways, respectively, synergistically restrained the growth, migration, and invasion of SHH-MB cells. Conclusions This work demonstrates that AMPK functions through two signaling pathways, SHH-GLI1 and NF-κB. AMPK-NF-κB axis is a potential target for molecular therapy of SHH-MB, and the combinational blockade of NF-κB and Shh pathways confers synergy for SHH-MB therapy

    Peritruncal Coronary Endothelial Cells Contribute to Proximal Coronary Artery Stems and Their Aortic Orifices in the Mouse Heart

    Get PDF
    Avian embryo experiments proved an ingrowth model for the coronary artery connections with the aorta. However, whether a similar mechanism applies to the mammalian heart still remains unclear. Here we analyzed how the main coronary arteries and their orifices form during murine heart development. Apelin (Apln) is expressed in coronary vascular endothelial cells including peritruncal endothelial cells. By immunostaining, however, we did not find Apln expression in endothelial cells of the aorta during the period of coronary vessel development (E10.5 to E15.5). As a result of this unique expression difference, Apln(CreERT2/+) genetically labels nascent coronary vessels forming on the heart, but not the aorta endothelium when pulse activated by tamoxifen injection at E10.5. This allowed us to define the temporal contribution of these distinct endothelial cell populations to formation of the murine coronary artery orifice. We found that the peritruncal endothelial cells were recruited to form the coronary artery orifices. These cells penetrate the wall of aorta and take up residence in the aortic sinus of valsalva. In conclusion, main coronary arteries and their orifices form through the recruitment and vascular remodeling of peritruncal endothelial cells in mammalian heart
    corecore