382 research outputs found

    Energy-balance climate models

    Get PDF
    An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed

    Bounded cascade clouds: albedo and effective thickness

    No full text
    International audienceIf climate models produced clouds having liquid water amounts close to those observed, they would compute a mean albedo that is often much too large, due to the treatment of clouds as plane-parallel. An approximate lower-bound for this "plane-parallel albedo bias" may be obtained from a fractal model having a range of optical thicknesses similar to those observed in marine stratocumulus, since they are more nearly plane-parallel than most other cloud types. We review and extend results from a model which produces a distribution of liquid water path having a lognormal-like probability density and a power-law wavenumber spectrum, with parameters determined by stratocumulus observations. As the spectral exponent approaches -1, the simulated cloud approaches a well-known multifractal, referred to as the "singular model", but when the exponent is -5/3, similar to what is observed, the cloud exhibits qualitatively different scaling properties, the socalled "bounded model". The mean albedo for bounded cascade clouds is a function of a fractal parameter, 0 f), which is given as an analytic function of f. California stratocumulus have a mean fractal parameter (f) ? 0.5, relative albedo bias of 15%, and an effective thickness 30% smaller than the mean thickness (? ? 0.7). For typical observed values of mean liquid water and (f), the effective thickness approximation gives a plane-parallel albedo within 3% of the mean albedo

    The shortwave radiative forcing bias of liquid and ice clouds from MODIS observations

    Get PDF
    We present an assessment of the plane-parallel bias of the shortwave cloud radiative forcing (SWCRF) of liquid and ice clouds at 1 deg scales using global MODIS (Terra and Aqua) cloud optical property retrievals for four months of the year 2005 representative of the meteorological seasons. The (negative) bias is estimated as the difference of SWCRF calculated using the Plane-Parallel Homogeneous (PPH) approximation and the Independent Column Approximation (ICA). PPH calculations use MODIS-derived gridpoint means while ICA calculations use distributions of cloud optical thickness and effective radius. Assisted by a broadband solar radiative transfer algorithm, we find that the absolute value of global SWCRF bias of liquid clouds at the top of the atmosphere is about 6 W m<sup>−2</sup> for MODIS overpass times while the SWCRF bias for ice clouds is smaller in absolute terms by about 0.7 W m<sup>−2</sup>, but with stronger spatial variability. If effective radius variability is neglected and only optical thickness horizontal variations are accounted for, the absolute SWCRF biases increase by about 0.3–0.4 W m<sup>−2</sup> on average. Marine clouds of both phases exhibit greater (more negative) SWCRF biases than continental clouds. Finally, morning (Terra)–afternoon (Aqua) differences in SWCRF bias are much more pronounced for ice clouds, up to about 15% (Aqua producing stronger negative bias) on global scales, with virtually all contribution to the difference coming from land areas. The substantial magnitude of the global SWCRF bias, which for clouds of both phases is collectively about 4 W m<sup>−2</sup> for diurnal averages, should be considered a strong motivation for global climate modelers to accelerate efforts linking cloud schemes capable of subgrid condensate variability with appropriate radiative transfer schemes

    Laminitis in dairy goats (Capra aegagrus hircus) on a low-forage diet

    Get PDF
    Dairy goats on high-concentrate diets attain high production levels, but at what cost? Here, ongoing lameness problems in a herd offered ad lib concentrates and roughages throughout their lifetime were investigated. Five severely affected, chronically lame animals were euthanased and examined postmortem. Foot pathology consisted of distortion of the claw shape and irregular fissures over the solar and bulbar horn with the distal phalanx rotated downwards on two claws. Rumen pH was measured between 5.26 and 5.46 with moderate rumen mucosa hyperkeratosis, and ulcerative, mild lymphocytic rumenitis. Feet showed irregular hyperplasia of the epidermal laminae with parakeratotic hyperkeratosis, especially in solar regions. Dense clusters of lymphocytes expanded the dermal laminae. Based on these findings, chronic laminitis was suspected. Ruminal hyperkeratosis was likely a result of prolonged periods of acidosis. The consequences of feeding a high-concentrate ration throughout the life of dairy goats need more research

    Geometrical exponents of contour loops on synthetic multifractal rough surfaces: multiplicative hierarchical cascade p-model

    Full text link
    In this paper, we study many geometrical properties of contour loops to characterize the morphology of synthetic multifractal rough surfaces, which are generated by multiplicative hierarchical cascading processes. To this end, two different classes of multifractal rough surfaces are numerically simulated. As the first group, singular measure multifractal rough surfaces are generated by using the pp model. The smoothened multifractal rough surface then is simulated by convolving the first group with a so-called Hurst exponent, HH^* . The generalized multifractal dimension of isoheight lines (contours), D(q)D(q), correlation exponent of contours, xlx_l, cumulative distributions of areas, ξ\xi, and perimeters, η\eta, are calculated for both synthetic multifractal rough surfaces. Our results show that for both mentioned classes, hyperscaling relations for contour loops are the same as that of monofractal systems. In contrast to singular measure multifractal rough surfaces, HH^* plays a leading role in smoothened multifractal rough surfaces. All computed geometrical exponents for the first class depend not only on its Hurst exponent but also on the set of pp values. But in spite of multifractal nature of smoothened surfaces (second class), the corresponding geometrical exponents are controlled by HH^*, the same as what happens for monofractal rough surfaces.Comment: 14 pages, 14 figures and 6 tables; V2: Added comments, references, table and major correction

    Solar radiative transfer simulations in Saharan dust plumes: particle shapes and 3-D effect

    Get PDF
    Radiative fields of three-dimensional inhomogeneous Saharan dust clouds have been calculated at solar wavelength (0.6 μm) by means of a Monte Carlo radiative transfer model. Scattering properties are taken from measurements in the SAMUM campaigns, from light scattering calculations for spheroids based on the MIESCHKA code, from Mie theory for spheres and from the geometric optics method assuming irregular shaped particles. Optical properties of different projected area equivalent shapes are compared. Large differences in optical properties are found especially in the phase functions. Results of radiative transfer calculations based on the Monte Carlo method are shown exemplarily for one dust cloud simulated by the cloud resolving atmospheric circulation model LM-MUSCAT-DES. Shape-induced differences in the radiation fluxes are pronounced, for example, the domain averaged normalized radiance is about 30% lower in the case of a dust plume consisting of spheroids or irregular particles compared to spheres. The effect of net horizontal photon transport (3-D effect) on the reflected radiance fields is only notable at the largest gradients in optical thickness. For example, the reflectance at low sun position differs locally about 15% when horizontal photon transport is accounted for. ‘Sharp edges' due to 1-D calculations are smoothed out in the 3-D case

    Modeling sustainability : Population, inequality, consumption, and bidirectional coupling of the Earth and human systems

    Get PDF
    Over the last two centuries, the impact of the Human System has grown dramatically, becoming strongly dominant within the Earth System in many different ways. Consumption, inequality, and population have increased extremely fast, especially since about 1950, threatening to overwhelm the many critical functions and ecosystems of the Earth System. Changes in the Earth System, in turn, have important feedback effects on the Human System, with costly and potentially serious consequences. However, current models do not incorporate these critical feedbacks. We argue that in order to understand the dynamics of either system, Earth SystemModels must be coupled with Human SystemModels through bidirectional couplings representing the positive, negative, and delayed feedbacks that exist in the real systems. In particular, key Human System variables, such as demographics, inequality, economic growth, and migration, are not coupled with the Earth System but are instead driven by exogenous estimates, such as United Nations population projections.This makes current models likely to miss important feedbacks in the real Earth-Human system, especially those that may result in unexpected or counterintuitive outcomes, and thus requiring different policy interventions from current models.The importance and imminence of sustainability challenges, the dominant role of the Human System in the Earth System, and the essential roles the Earth System plays for the Human System, all call for collaboration of natural scientists, social scientists, and engineers in multidisciplinary research and modeling to develop coupled Earth-Human system models for devising effective science-based policies and measures to benefit current and future generations

    The Immunological Synapse: a Dynamic Platform for Local Signaling

    Get PDF
    The immunological synapse (IS) as a concept has evolved from a static view of the junction between T cells and their antigen-presenting cell partners. The entire process of IS formation and extinction is now known to entail a dynamic reorganization of membrane domains and proteins within and adjacent to those domains. Discussion The entire process is also intricately tied to the motility machinery—both as that machinery directs “scanning” prior to T-cell receptor engagement and as it is appropriated during the ongoing developments at the IS. While the synapse often remains dynamic in order to encourage surveillance of new antigen-presenting surfaces, cytoskeletal forces also regulate the development of signals, likely including the assembly of ion channels. In both neuronal and immunological synapses, localized Ca 2+ signals and accumulation or depletion of ions in microdomains accompany the concentration of signaling molecules in the synapse. Such spatiotemporal signaling in the synapse greatly accelerates kinetics and provides essential checkpoints to validate effective cell–cell communication

    Water channel pore size determines exclusion properties but not solute selectivity

    Get PDF
    Aquaporins (AQPs) are a ubiquitous family of transmembrane water channel proteins. A subgroup of AQP water channels also facilitates transmembrane diffusion of small, polar solutes. A constriction within the pore, the aromatic/arginine (ar/R) selectivity filter, is thought to control solute permeability: previous studies on single representative water channel proteins suggest narrow channels conduct water, whilst wider channels permit passage of solutes. To assess this model of selectivity, we used mutagenesis, permeability measurements and in silico comparisons of water-specific as well as glycerol-permeable human AQPs. Our studies show that single amino acid substitutions in the selectivity filters of AQP1, AQP4 and AQP3 differentially affect glycerol and urea permeability in an AQP-specific manner. Comparison between in silico-calculated channel cross-sectional areas and in vitro permeability measurements suggests that selectivity filter cross-sectional area predicts urea but not glycerol permeability. Our data show that substrate discrimination in water channels depends on a complex interplay between the solute, pore size, and polarity, and that using single water channel proteins as representative models has led to an underestimation of this complexity
    corecore