260 research outputs found
Bone Histomorphometry Revisited
Bone histomorphometry is defined as a quantitative evaluation of bone micro architecture, remodelling and metabolism. Bone metabolic assessment is based on a dynamic process, which provides data on bone matrix formation rate by incorporating a tetracycline compound. In the static evaluation, samples are stained and a semi-automatic technique is applied in order to obtain bone microarchitectural parameters such as trabecular area, perimeter and width. These parameters are in 2D, but they can be extrapolated into 3D, applying a stereological formula. Histomorphometry can be applied to different areas; however, in recent decades it has been a relevant tool in monitoring the effect of drug administration in bone. The main challenge for the future will be the development of noninvasive methods that can give similar information. In the herein review paper we will discuss the general principles and main applications of bone histomorphometry
Desenvolvimento de um Repositório de Imagens e Base de Dados Portuguesa de Casos COVID-19: Aprendizagem e Partilha de Conhecimento em Tempo de Pandemia
info:eu-repo/semantics/publishedVersio
Clcn7F318L/+ as a new mouse model of Albers-Schönberg disease
Dominant negative mutations in CLCN7, which encodes a homodimeric chloride channel needed for matrix acidification by osteoclasts, cause Albers-Schönberg disease (also known as autosomal dominant osteopetrosis type 2). More than 25 different CLCN7 mutations have been identified in patients affected with Albers-Schönberg disease, but only one mutation (Clcn7G213R) has been introduced in mice to create an animal model of this disease. Here we describe a mouse with a different osteopetrosis-causing mutation (Clcn7F318L). Compared to Clcn7+/+ mice, 12-week-old Clcn7F318L/+ mice have significantly increased trabecular bone volume, consistent with Clcn7F318L acting as a dominant negative mutation. Clcn7F318L/F318L and Clcn7F318L/G213R mice die by 1 month of age and resemble Clcn7 knockout mice, which indicate that p.F318L mutant protein is non-functional and p.F318L and p.G213R mutant proteins do not complement one another. Since it has been reported that treatment with interferon gamma (IFN-G) improves bone properties in Clcn7G213R/+ mice, we treated Clcn7F318L/+ mice with IFN-G and observed a decrease in osteoclast number and mineral apposition rate, but no overall improvement in bone properties. Our results suggest that the benefits of IFN-G therapy in patients with Albers-Schönberg disease may be mutation-specific
Recommended from our members
Mãe, cadê o bebê? Repercussões do nascimento prematuro de um irmão
O objetivo deste artigo foi investigar as repercussões do nascimento prematuro do bebê sobre o(s) seu(s) irmão(s), sob a perspectiva materna, durante a internação do recém-nascido na Unidade de Terapia Intensiva Neonatal. O estudo contou com a participação de 37 mães, entrevistadas no 15º dia após o parto. Elas responderam a instrumentos que contemplaram dados demográficos familiares, informações clÃnicas do bebê e da mãe, e a experiência da maternidade no contexto da prematuridade. A entrevista sobre maternidade continha questões acerca do irmão do bebê, cujas respostas foram examinadas a partir de análise de conteúdo qualitativa. Os resultados revelaram alteração na rotina dos irmãos em razão da maior ausência materna. Os sentimentos e reações dos irmãos incluÃram questionamentos, preocupações, ciúme e ansiedade, ao lado de contentamento e curiosidade. A visita do irmão ao bebê prematuro não foi permitida por alguns hospitais. Evidencia-se a importância de os irmãos serem atendidos em suas necessidades de cuidado nesse perÃodo de hospitalização do bebê
Contribution for new genetic markers of rheumatoid arthritis activity and severity : sequencing of the tumor necrosis factor-alpha gene promoter
© 2007 Fonseca et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly citedThe objective of this study was to assess whether clinical measures of rheumatoid arthritis activity and severity were influenced by tumor necrosis factor-alpha (TNF-alpha) promoter genotype/haplotype markers. Each patient's disease activity was assessed by the disease activity score using 28 joint counts (DAS28) and functional capacity by the Health Assessment Questionnaire (HAQ) score. Systemic manifestations, radiological damage evaluated by the Sharp/van der Heijde (SvdH) score, disease-modifying anti-rheumatic drug use, joint surgeries, and work disability were also assessed. The promoter region of the TNF-alpha gene, between nucleotides -1,318 and +49, was sequenced using an automated platform. Five hundred fifty-four patients were evaluated and genotyped for 10 single-nucleotide polymorphism (SNP) markers, but 5 of these markers were excluded due to failure to fall within Hardy-Weinberg equilibrium or to monomorphism. Patients with more than 10 years of disease duration (DD) presented significant associations between the -857 SNP and systemic manifestations, as well as joint surgeries. Associations were also found between the -308 SNP and work disability in patients with more than 2 years of DD and radiological damage in patients with less than 10 years of DD. A borderline effect was found between the -238 SNP and HAQ score and radiological damage in patients with 2 to 10 years of DD. An association was also found between haplotypes and the SvdH score for those with more than 10 years of DD. An association was found between some TNF-alpha promoter SNPs and systemic manifestations, radiological progression, HAQ score, work disability, and joint surgeries, particularly in some classes of DD and between haplotypes and radiological progression for those with more than 10 years of DD.This work was supported by grant POCTI/SAU-ESP/59111/2004 from Fundação Ciência e Tecnologia.info:eu-repo/semantics/publishedVersio
Pharmacological inhibition of lysine-specific demethylase 1 (LSD1) induces global transcriptional deregulation and ultrastructural alterations that impair viability in Schistosoma mansoni
Treatment and control of schistosomiasis still rely on only one effective drug, praziquantel (PZQ) and, due to mass treatment, the increasing risk of selecting for schistosome strains that are resistant to PZQ has alerted investigators to the urgent need to develop novel therapeutic strategies. The histone-modifying enzymes (HMEs) represent promising targets for the development of epigenetic drugs against Schistosoma mansoni. In the present study, we targeted the S. mansoni lysine-specific demethylase 1 (SmLSD1), a transcriptional corepressor, using a novel and selective synthetic inhibitor, MC3935, which was used to treat schistosomula and adult worms in vitro. By using cell viability assays and optical and electron microscopy, we showed that treatment with MC3935 affected parasite motility, egg-laying, tegument, and cellular organelle structures, culminating in the death of schistosomula and adult worms. In silico molecular modeling and docking analysis suggested that MC3935 binds to the catalytic pocket of SmLSD1. Western blot analysis revealed that MC3935 inhibited SmLSD1 demethylation activity of H3K4me1/2. Knockdown of SmLSD1 by RNAi recapitulated MC3935 phenotypes in adult worms. RNA-Seq analysis of MC3935-treated parasites revealed significant differences in gene expression related to critical biological processes. Collectively, our findings show that SmLSD1 is a promising drug target for the treatment of schistosomiasis and strongly support the further development and in vivo testing of selective schistosome LSD1 inhibitors
Human Immunodeficiency Virus Envelope Protein Gp120 Induces Proliferation but Not Apoptosis in Osteoblasts at Physiologic Concentrations
Patients with HIV infection have decreased numbers of osteoblasts, decreased bone mineral density and increased risk of fracture compared to uninfected patients; however, the molecular mechanisms behind these associations remain unclear. We questioned whether Gp120, a component of the envelope protein of HIV capable of inducing apoptosis in many cell types, is able to induce cell death in bone-forming osteoblasts. We show that treatment of immortalized osteoblast-like cells and primary human osteoblasts with exogenous Gp120 in vitro at physiologic concentrations does not result in apoptosis. Instead, in the osteoblast-like U2OS cell line, cells expressing CXCR4, a receptor for Gp120, had increased proliferation when treated with Gp120 compared to control (P<0.05), which was inhibited by pretreatment with a CXCR4 inhibitor and a G-protein inhibitor. This suggests that Gp120 is not an inducer of apoptosis in human osteoblasts and likely does not directly contribute to osteoporosis in infected patients by this mechanism
- …